Loading…
Customer Satisfaction Prediction in the Shipping Industry with Hybrid Meta-heuristic Approaches
Optimization and prediction of customer satisfaction in the shipping industry impacts immensely upon strategic planning and consequently on the targeted market share of a corporation. In shipping industry, accurate measures of customer satisfaction are usually very cumbersome to elaborate. In this w...
Saved in:
Published in: | Computational economics 2019-08, Vol.54 (2), p.647-667 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-56033ccd3308cd20092dd7469e85c3eba7bf7a1f65c9241c9c81dfd90e508ed93 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-56033ccd3308cd20092dd7469e85c3eba7bf7a1f65c9241c9c81dfd90e508ed93 |
container_end_page | 667 |
container_issue | 2 |
container_start_page | 647 |
container_title | Computational economics |
container_volume | 54 |
creator | Bekiros, Stelios Loukeris, Nikolaos Matsatsinis, Nikolaos Bezzina, Frank |
description | Optimization and prediction of customer satisfaction in the shipping industry impacts immensely upon strategic planning and consequently on the targeted market share of a corporation. In shipping industry, accurate measures of customer satisfaction are usually very cumbersome to elaborate. In this work we aim to reveal the most effective optimization methods, employing artificial intelligence approaches such as rough sets, neural networks, advanced classification methods as well as multi-criteria analysis under a comparative framework vis-à-vis their forecasting performance. |
doi_str_mv | 10.1007/s10614-018-9842-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2093012820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093012820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-56033ccd3308cd20092dd7469e85c3eba7bf7a1f65c9241c9c81dfd90e508ed93</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOTpJNrvJsRS1hYpC9Ry2SbabYnfXJEX69qas4MnTzOH__hk-hG4p3FOA6iFSKGlBgEqiZMGIOEMTKipGlKqKczQBxSpSgVKX6CrGHQAIytgE6fkhpn7vAl7XycemNsn3HX4Lzvpx9R1OrcPr1g-D77Z42dmMhCP-9qnFi-MmeItfXKpJ6w7Bx-QNng1D6GvTuniNLpr6M7qb3zlFH0-P7_MFWb0-L-ezFTFc0kRECZwbYzkHaSyD_K61VVEqJ4XhblNXm6aqaVMKo1hBjTKS2sYqcAKks4pP0d3Ymw9_HVxMetcfQpdPagaKA2WSQU7RMWVCH2NwjR6C39fhqCnok0c9etTZoz551CIzbGRiznZbF_6a_4d-AJ5Hdp4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093012820</pqid></control><display><type>article</type><title>Customer Satisfaction Prediction in the Shipping Industry with Hybrid Meta-heuristic Approaches</title><source>International Bibliography of the Social Sciences (IBSS)</source><source>EconLit with Full Text</source><source>ABI/INFORM Global</source><source>Springer Link</source><creator>Bekiros, Stelios ; Loukeris, Nikolaos ; Matsatsinis, Nikolaos ; Bezzina, Frank</creator><creatorcontrib>Bekiros, Stelios ; Loukeris, Nikolaos ; Matsatsinis, Nikolaos ; Bezzina, Frank</creatorcontrib><description>Optimization and prediction of customer satisfaction in the shipping industry impacts immensely upon strategic planning and consequently on the targeted market share of a corporation. In shipping industry, accurate measures of customer satisfaction are usually very cumbersome to elaborate. In this work we aim to reveal the most effective optimization methods, employing artificial intelligence approaches such as rough sets, neural networks, advanced classification methods as well as multi-criteria analysis under a comparative framework vis-à-vis their forecasting performance.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-018-9842-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial intelligence ; Behavioral/Experimental Economics ; Classification ; Computer Appl. in Social and Behavioral Sciences ; Customer satisfaction ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Forecasting ; Heuristic methods ; Market shares ; Math Applications in Computer Science ; Multiple criterion ; Neural networks ; Operations Research/Decision Theory ; Optimization ; Shipping ; Shipping industry ; Strategic planning</subject><ispartof>Computational economics, 2019-08, Vol.54 (2), p.647-667</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Computational Economics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-56033ccd3308cd20092dd7469e85c3eba7bf7a1f65c9241c9c81dfd90e508ed93</citedby><cites>FETCH-LOGICAL-c381t-56033ccd3308cd20092dd7469e85c3eba7bf7a1f65c9241c9c81dfd90e508ed93</cites><orcidid>0000-0002-9376-8726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2093012820/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2093012820?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,12826,27901,27902,33200,36037,44339,74638</link.rule.ids></links><search><creatorcontrib>Bekiros, Stelios</creatorcontrib><creatorcontrib>Loukeris, Nikolaos</creatorcontrib><creatorcontrib>Matsatsinis, Nikolaos</creatorcontrib><creatorcontrib>Bezzina, Frank</creatorcontrib><title>Customer Satisfaction Prediction in the Shipping Industry with Hybrid Meta-heuristic Approaches</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>Optimization and prediction of customer satisfaction in the shipping industry impacts immensely upon strategic planning and consequently on the targeted market share of a corporation. In shipping industry, accurate measures of customer satisfaction are usually very cumbersome to elaborate. In this work we aim to reveal the most effective optimization methods, employing artificial intelligence approaches such as rough sets, neural networks, advanced classification methods as well as multi-criteria analysis under a comparative framework vis-à-vis their forecasting performance.</description><subject>Artificial intelligence</subject><subject>Behavioral/Experimental Economics</subject><subject>Classification</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Customer satisfaction</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Forecasting</subject><subject>Heuristic methods</subject><subject>Market shares</subject><subject>Math Applications in Computer Science</subject><subject>Multiple criterion</subject><subject>Neural networks</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Shipping</subject><subject>Shipping industry</subject><subject>Strategic planning</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>8BJ</sourceid><sourceid>M0C</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOTpJNrvJsRS1hYpC9Ry2SbabYnfXJEX69qas4MnTzOH__hk-hG4p3FOA6iFSKGlBgEqiZMGIOEMTKipGlKqKczQBxSpSgVKX6CrGHQAIytgE6fkhpn7vAl7XycemNsn3HX4Lzvpx9R1OrcPr1g-D77Z42dmMhCP-9qnFi-MmeItfXKpJ6w7Bx-QNng1D6GvTuniNLpr6M7qb3zlFH0-P7_MFWb0-L-ezFTFc0kRECZwbYzkHaSyD_K61VVEqJ4XhblNXm6aqaVMKo1hBjTKS2sYqcAKks4pP0d3Ymw9_HVxMetcfQpdPagaKA2WSQU7RMWVCH2NwjR6C39fhqCnok0c9etTZoz551CIzbGRiznZbF_6a_4d-AJ5Hdp4</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Bekiros, Stelios</creator><creator>Loukeris, Nikolaos</creator><creator>Matsatsinis, Nikolaos</creator><creator>Bezzina, Frank</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-9376-8726</orcidid></search><sort><creationdate>20190801</creationdate><title>Customer Satisfaction Prediction in the Shipping Industry with Hybrid Meta-heuristic Approaches</title><author>Bekiros, Stelios ; Loukeris, Nikolaos ; Matsatsinis, Nikolaos ; Bezzina, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-56033ccd3308cd20092dd7469e85c3eba7bf7a1f65c9241c9c81dfd90e508ed93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial intelligence</topic><topic>Behavioral/Experimental Economics</topic><topic>Classification</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Customer satisfaction</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Forecasting</topic><topic>Heuristic methods</topic><topic>Market shares</topic><topic>Math Applications in Computer Science</topic><topic>Multiple criterion</topic><topic>Neural networks</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Shipping</topic><topic>Shipping industry</topic><topic>Strategic planning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bekiros, Stelios</creatorcontrib><creatorcontrib>Loukeris, Nikolaos</creatorcontrib><creatorcontrib>Matsatsinis, Nikolaos</creatorcontrib><creatorcontrib>Bezzina, Frank</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bekiros, Stelios</au><au>Loukeris, Nikolaos</au><au>Matsatsinis, Nikolaos</au><au>Bezzina, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Customer Satisfaction Prediction in the Shipping Industry with Hybrid Meta-heuristic Approaches</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>54</volume><issue>2</issue><spage>647</spage><epage>667</epage><pages>647-667</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>Optimization and prediction of customer satisfaction in the shipping industry impacts immensely upon strategic planning and consequently on the targeted market share of a corporation. In shipping industry, accurate measures of customer satisfaction are usually very cumbersome to elaborate. In this work we aim to reveal the most effective optimization methods, employing artificial intelligence approaches such as rough sets, neural networks, advanced classification methods as well as multi-criteria analysis under a comparative framework vis-à-vis their forecasting performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-018-9842-5</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-9376-8726</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2019-08, Vol.54 (2), p.647-667 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_journals_2093012820 |
source | International Bibliography of the Social Sciences (IBSS); EconLit with Full Text; ABI/INFORM Global; Springer Link |
subjects | Artificial intelligence Behavioral/Experimental Economics Classification Computer Appl. in Social and Behavioral Sciences Customer satisfaction Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Forecasting Heuristic methods Market shares Math Applications in Computer Science Multiple criterion Neural networks Operations Research/Decision Theory Optimization Shipping Shipping industry Strategic planning |
title | Customer Satisfaction Prediction in the Shipping Industry with Hybrid Meta-heuristic Approaches |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Customer%20Satisfaction%20Prediction%20in%20the%20Shipping%20Industry%20with%20Hybrid%20Meta-heuristic%20Approaches&rft.jtitle=Computational%20economics&rft.au=Bekiros,%20Stelios&rft.date=2019-08-01&rft.volume=54&rft.issue=2&rft.spage=647&rft.epage=667&rft.pages=647-667&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-018-9842-5&rft_dat=%3Cproquest_cross%3E2093012820%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-56033ccd3308cd20092dd7469e85c3eba7bf7a1f65c9241c9c81dfd90e508ed93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2093012820&rft_id=info:pmid/&rfr_iscdi=true |