Loading…

High frame-rate cardiac ultrasound imaging with deep learning

Cardiac ultrasound imaging requires a high frame rate in order to capture rapid motion. This can be achieved by multi-line acquisition (MLA), where several narrow-focused received lines are obtained from each wide-focused transmitted line. This shortens the acquisition time at the expense of introdu...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-08
Main Authors: Ortal Senouf, Vedula, Sanketh, Zurakhov, Grigoriy, Bronstein, Alex M, Zibulevsky, Michael, Michailovich, Oleg, Adam, Dan, Blondheim, David
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Ortal Senouf
Vedula, Sanketh
Zurakhov, Grigoriy
Bronstein, Alex M
Zibulevsky, Michael
Michailovich, Oleg
Adam, Dan
Blondheim, David
description Cardiac ultrasound imaging requires a high frame rate in order to capture rapid motion. This can be achieved by multi-line acquisition (MLA), where several narrow-focused received lines are obtained from each wide-focused transmitted line. This shortens the acquisition time at the expense of introducing block artifacts. In this paper, we propose a data-driven learning-based approach to improve the MLA image quality. We train an end-to-end convolutional neural network on pairs of real ultrasound cardiac data, acquired through MLA and the corresponding single-line acquisition (SLA). The network achieves a significant improvement in image quality for both \(5-\) and \(7-\)line MLA resulting in a decorrelation measure similar to that of SLA while having the frame rate of MLA.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2093215094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093215094</sourcerecordid><originalsourceid>FETCH-proquest_journals_20932150943</originalsourceid><addsrcrecordid>eNqNikEKgkAUQIcgSMo7DLQWxj9quWgVhQdoLx_96oiO9meGrp-LDtDqwXtvJyLQOk2uGcBBxM6NSikoLpDnOhK3yvSD7BhnShg9yQa5NdjIMHlGtwTbSjNjb2wvP8YPsiVa5UTIdlMnse9wchT_eBTn5-N1r5KVl3cg5-txCWy3VIMqNaS5KjP93_UFdis36g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093215094</pqid></control><display><type>article</type><title>High frame-rate cardiac ultrasound imaging with deep learning</title><source>Publicly Available Content Database</source><creator>Ortal Senouf ; Vedula, Sanketh ; Zurakhov, Grigoriy ; Bronstein, Alex M ; Zibulevsky, Michael ; Michailovich, Oleg ; Adam, Dan ; Blondheim, David</creator><creatorcontrib>Ortal Senouf ; Vedula, Sanketh ; Zurakhov, Grigoriy ; Bronstein, Alex M ; Zibulevsky, Michael ; Michailovich, Oleg ; Adam, Dan ; Blondheim, David</creatorcontrib><description>Cardiac ultrasound imaging requires a high frame rate in order to capture rapid motion. This can be achieved by multi-line acquisition (MLA), where several narrow-focused received lines are obtained from each wide-focused transmitted line. This shortens the acquisition time at the expense of introducing block artifacts. In this paper, we propose a data-driven learning-based approach to improve the MLA image quality. We train an end-to-end convolutional neural network on pairs of real ultrasound cardiac data, acquired through MLA and the corresponding single-line acquisition (SLA). The network achieves a significant improvement in image quality for both \(5-\) and \(7-\)line MLA resulting in a decorrelation measure similar to that of SLA while having the frame rate of MLA.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial neural networks ; Data acquisition ; Deep learning ; Digital cameras ; Image acquisition ; Image quality ; Neural networks ; Ultrasonic imaging</subject><ispartof>arXiv.org, 2018-08</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by-nc-sa/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2093215094?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Ortal Senouf</creatorcontrib><creatorcontrib>Vedula, Sanketh</creatorcontrib><creatorcontrib>Zurakhov, Grigoriy</creatorcontrib><creatorcontrib>Bronstein, Alex M</creatorcontrib><creatorcontrib>Zibulevsky, Michael</creatorcontrib><creatorcontrib>Michailovich, Oleg</creatorcontrib><creatorcontrib>Adam, Dan</creatorcontrib><creatorcontrib>Blondheim, David</creatorcontrib><title>High frame-rate cardiac ultrasound imaging with deep learning</title><title>arXiv.org</title><description>Cardiac ultrasound imaging requires a high frame rate in order to capture rapid motion. This can be achieved by multi-line acquisition (MLA), where several narrow-focused received lines are obtained from each wide-focused transmitted line. This shortens the acquisition time at the expense of introducing block artifacts. In this paper, we propose a data-driven learning-based approach to improve the MLA image quality. We train an end-to-end convolutional neural network on pairs of real ultrasound cardiac data, acquired through MLA and the corresponding single-line acquisition (SLA). The network achieves a significant improvement in image quality for both \(5-\) and \(7-\)line MLA resulting in a decorrelation measure similar to that of SLA while having the frame rate of MLA.</description><subject>Artificial neural networks</subject><subject>Data acquisition</subject><subject>Deep learning</subject><subject>Digital cameras</subject><subject>Image acquisition</subject><subject>Image quality</subject><subject>Neural networks</subject><subject>Ultrasonic imaging</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNikEKgkAUQIcgSMo7DLQWxj9quWgVhQdoLx_96oiO9meGrp-LDtDqwXtvJyLQOk2uGcBBxM6NSikoLpDnOhK3yvSD7BhnShg9yQa5NdjIMHlGtwTbSjNjb2wvP8YPsiVa5UTIdlMnse9wchT_eBTn5-N1r5KVl3cg5-txCWy3VIMqNaS5KjP93_UFdis36g</recordid><startdate>20180823</startdate><enddate>20180823</enddate><creator>Ortal Senouf</creator><creator>Vedula, Sanketh</creator><creator>Zurakhov, Grigoriy</creator><creator>Bronstein, Alex M</creator><creator>Zibulevsky, Michael</creator><creator>Michailovich, Oleg</creator><creator>Adam, Dan</creator><creator>Blondheim, David</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180823</creationdate><title>High frame-rate cardiac ultrasound imaging with deep learning</title><author>Ortal Senouf ; Vedula, Sanketh ; Zurakhov, Grigoriy ; Bronstein, Alex M ; Zibulevsky, Michael ; Michailovich, Oleg ; Adam, Dan ; Blondheim, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20932150943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Data acquisition</topic><topic>Deep learning</topic><topic>Digital cameras</topic><topic>Image acquisition</topic><topic>Image quality</topic><topic>Neural networks</topic><topic>Ultrasonic imaging</topic><toplevel>online_resources</toplevel><creatorcontrib>Ortal Senouf</creatorcontrib><creatorcontrib>Vedula, Sanketh</creatorcontrib><creatorcontrib>Zurakhov, Grigoriy</creatorcontrib><creatorcontrib>Bronstein, Alex M</creatorcontrib><creatorcontrib>Zibulevsky, Michael</creatorcontrib><creatorcontrib>Michailovich, Oleg</creatorcontrib><creatorcontrib>Adam, Dan</creatorcontrib><creatorcontrib>Blondheim, David</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ortal Senouf</au><au>Vedula, Sanketh</au><au>Zurakhov, Grigoriy</au><au>Bronstein, Alex M</au><au>Zibulevsky, Michael</au><au>Michailovich, Oleg</au><au>Adam, Dan</au><au>Blondheim, David</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>High frame-rate cardiac ultrasound imaging with deep learning</atitle><jtitle>arXiv.org</jtitle><date>2018-08-23</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Cardiac ultrasound imaging requires a high frame rate in order to capture rapid motion. This can be achieved by multi-line acquisition (MLA), where several narrow-focused received lines are obtained from each wide-focused transmitted line. This shortens the acquisition time at the expense of introducing block artifacts. In this paper, we propose a data-driven learning-based approach to improve the MLA image quality. We train an end-to-end convolutional neural network on pairs of real ultrasound cardiac data, acquired through MLA and the corresponding single-line acquisition (SLA). The network achieves a significant improvement in image quality for both \(5-\) and \(7-\)line MLA resulting in a decorrelation measure similar to that of SLA while having the frame rate of MLA.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2093215094
source Publicly Available Content Database
subjects Artificial neural networks
Data acquisition
Deep learning
Digital cameras
Image acquisition
Image quality
Neural networks
Ultrasonic imaging
title High frame-rate cardiac ultrasound imaging with deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A24%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=High%20frame-rate%20cardiac%20ultrasound%20imaging%20with%20deep%20learning&rft.jtitle=arXiv.org&rft.au=Ortal%20Senouf&rft.date=2018-08-23&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2093215094%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20932150943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2093215094&rft_id=info:pmid/&rfr_iscdi=true