Loading…
Atomistic behavior of metal surfaces under high electric fields
Combining classical electrodynamics and density functional theory (DFT) calculations, we develop a general and rigorous theoretical framework that describes the energetics of metal surfaces under high electric fields. We show that the behavior of a surface atom in the presence of an electric field c...
Saved in:
Published in: | arXiv.org 2019-05 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Combining classical electrodynamics and density functional theory (DFT) calculations, we develop a general and rigorous theoretical framework that describes the energetics of metal surfaces under high electric fields. We show that the behavior of a surface atom in the presence of an electric field can be described by the polarization characteristics of the permanent and field-induced charges in its vicinity. We use DFT calculations for the case of a W adatom on a W{110} surface to confirm the predictions of our theory and quantify its system-specific parameters. Our quantitative predictions for the diffusion of W-on-W{110} under field are in good agreement with experimental measurements. This work is a crucial step towards developing atomistic computational models of such systems for long-term simulations. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1808.07782 |