Loading…

Efficient illumination angle self-calibration in Fourier ptychography

Fourier ptychography captures intensity images with varying source patterns (illumination angles) in order to computationally reconstruct large space-bandwidth-product images. Accurate knowledge of the illumination angles is necessary for good image quality; hence, calibration methods are crucial, d...

Full description

Saved in:
Bibliographic Details
Published in:Applied optics (2004) 2018-07, Vol.57 (19), p.5434
Main Authors: Eckert, Regina, Phillips, Zachary F, Waller, Laura
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fourier ptychography captures intensity images with varying source patterns (illumination angles) in order to computationally reconstruct large space-bandwidth-product images. Accurate knowledge of the illumination angles is necessary for good image quality; hence, calibration methods are crucial, despite often being impractical or slow. Here, we propose a fast, robust, and accurate self-calibration algorithm that uses only experimentally collected data and general knowledge of the illumination setup. First, our algorithm makes a fast direct estimate of the brightfield illumination angles based on image processing. Then, a more computationally intensive spectral correlation method is used inside the iterative solver to further refine the angle estimates of both brightfield and darkfield images. We demonstrate our method for correcting large and small misalignment artifacts in 2D and 3D Fourier ptychography with different source types: an LED array, a galvo-steered laser, and a high-NA quasi-dome LED illuminator.
ISSN:1559-128X
2155-3165
DOI:10.1364/AO.57.005434