Loading…

Shepherd: Enabling Automatic and Large-Scale Login Security Studies

More and more parts of the internet are hidden behind a login field. This poses a barrier to any study predicated on scanning the internet. Moreover, the authentication process itself may be a weak point. To study authentication weaknesses at scale, automated login capabilities are needed. In this w...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-08
Main Authors: Jonker, Hugo, Kalkman, Jelmer, Krumnow, Benjamin, Sleegers, Marc, Verresen, Alan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Jonker, Hugo
Kalkman, Jelmer
Krumnow, Benjamin
Sleegers, Marc
Verresen, Alan
description More and more parts of the internet are hidden behind a login field. This poses a barrier to any study predicated on scanning the internet. Moreover, the authentication process itself may be a weak point. To study authentication weaknesses at scale, automated login capabilities are needed. In this work we introduce Shepherd, a scanning framework to automatically log in on websites. The Shepherd framework enables us to perform large-scale scans of post-login aspects of websites. Shepherd scans a website for login fields, attempts to submit credentials and evaluates whether login was successful. We illustrate Shepherd's capabilities by means of a scan for session hijacking susceptibility. In this study, we use a set of unverified website credentials, some of which will be invalid. Using this set, Shepherd is able to fully automatically log in and verify that it is indeed logged in on 6,273 unknown sites, or 12.4% of the test set. We found that from our (biased) test set, 2,579 sites, i.e., 41.4%, are vulnerable to simple session hijacking attacks.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2093774829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2093774829</sourcerecordid><originalsourceid>FETCH-proquest_journals_20937748293</originalsourceid><addsrcrecordid>eNqNyr0OgjAUQOHGxESivMNNnElqCwJuhmAc2OpOKlyhBFvsz-Db6-ADOJ3hOysSMc4PSZEytiGxcxOllB1zlmU8IpUYcRnR9ieotbzPSg9wDt48pVcdSN1DI-2AiejkjNCYQWkQ2AWr_BuED71CtyPrh5wdxr9uyf5S36prsljzCuh8O5lg9ZdaRkue52nBSv7f9QGq4Dmn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2093774829</pqid></control><display><type>article</type><title>Shepherd: Enabling Automatic and Large-Scale Login Security Studies</title><source>Publicly Available Content Database</source><creator>Jonker, Hugo ; Kalkman, Jelmer ; Krumnow, Benjamin ; Sleegers, Marc ; Verresen, Alan</creator><creatorcontrib>Jonker, Hugo ; Kalkman, Jelmer ; Krumnow, Benjamin ; Sleegers, Marc ; Verresen, Alan</creatorcontrib><description>More and more parts of the internet are hidden behind a login field. This poses a barrier to any study predicated on scanning the internet. Moreover, the authentication process itself may be a weak point. To study authentication weaknesses at scale, automated login capabilities are needed. In this work we introduce Shepherd, a scanning framework to automatically log in on websites. The Shepherd framework enables us to perform large-scale scans of post-login aspects of websites. Shepherd scans a website for login fields, attempts to submit credentials and evaluates whether login was successful. We illustrate Shepherd's capabilities by means of a scan for session hijacking susceptibility. In this study, we use a set of unverified website credentials, some of which will be invalid. Using this set, Shepherd is able to fully automatically log in and verify that it is indeed logged in on 6,273 unknown sites, or 12.4% of the test set. We found that from our (biased) test set, 2,579 sites, i.e., 41.4%, are vulnerable to simple session hijacking attacks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Access control ; Authentication ; Automation ; Cybersecurity ; Internet ; Websites</subject><ispartof>arXiv.org, 2018-08</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2093774829?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Jonker, Hugo</creatorcontrib><creatorcontrib>Kalkman, Jelmer</creatorcontrib><creatorcontrib>Krumnow, Benjamin</creatorcontrib><creatorcontrib>Sleegers, Marc</creatorcontrib><creatorcontrib>Verresen, Alan</creatorcontrib><title>Shepherd: Enabling Automatic and Large-Scale Login Security Studies</title><title>arXiv.org</title><description>More and more parts of the internet are hidden behind a login field. This poses a barrier to any study predicated on scanning the internet. Moreover, the authentication process itself may be a weak point. To study authentication weaknesses at scale, automated login capabilities are needed. In this work we introduce Shepherd, a scanning framework to automatically log in on websites. The Shepherd framework enables us to perform large-scale scans of post-login aspects of websites. Shepherd scans a website for login fields, attempts to submit credentials and evaluates whether login was successful. We illustrate Shepherd's capabilities by means of a scan for session hijacking susceptibility. In this study, we use a set of unverified website credentials, some of which will be invalid. Using this set, Shepherd is able to fully automatically log in and verify that it is indeed logged in on 6,273 unknown sites, or 12.4% of the test set. We found that from our (biased) test set, 2,579 sites, i.e., 41.4%, are vulnerable to simple session hijacking attacks.</description><subject>Access control</subject><subject>Authentication</subject><subject>Automation</subject><subject>Cybersecurity</subject><subject>Internet</subject><subject>Websites</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyr0OgjAUQOHGxESivMNNnElqCwJuhmAc2OpOKlyhBFvsz-Db6-ADOJ3hOysSMc4PSZEytiGxcxOllB1zlmU8IpUYcRnR9ieotbzPSg9wDt48pVcdSN1DI-2AiejkjNCYQWkQ2AWr_BuED71CtyPrh5wdxr9uyf5S36prsljzCuh8O5lg9ZdaRkue52nBSv7f9QGq4Dmn</recordid><startdate>20180802</startdate><enddate>20180802</enddate><creator>Jonker, Hugo</creator><creator>Kalkman, Jelmer</creator><creator>Krumnow, Benjamin</creator><creator>Sleegers, Marc</creator><creator>Verresen, Alan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180802</creationdate><title>Shepherd: Enabling Automatic and Large-Scale Login Security Studies</title><author>Jonker, Hugo ; Kalkman, Jelmer ; Krumnow, Benjamin ; Sleegers, Marc ; Verresen, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20937748293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Access control</topic><topic>Authentication</topic><topic>Automation</topic><topic>Cybersecurity</topic><topic>Internet</topic><topic>Websites</topic><toplevel>online_resources</toplevel><creatorcontrib>Jonker, Hugo</creatorcontrib><creatorcontrib>Kalkman, Jelmer</creatorcontrib><creatorcontrib>Krumnow, Benjamin</creatorcontrib><creatorcontrib>Sleegers, Marc</creatorcontrib><creatorcontrib>Verresen, Alan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jonker, Hugo</au><au>Kalkman, Jelmer</au><au>Krumnow, Benjamin</au><au>Sleegers, Marc</au><au>Verresen, Alan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Shepherd: Enabling Automatic and Large-Scale Login Security Studies</atitle><jtitle>arXiv.org</jtitle><date>2018-08-02</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>More and more parts of the internet are hidden behind a login field. This poses a barrier to any study predicated on scanning the internet. Moreover, the authentication process itself may be a weak point. To study authentication weaknesses at scale, automated login capabilities are needed. In this work we introduce Shepherd, a scanning framework to automatically log in on websites. The Shepherd framework enables us to perform large-scale scans of post-login aspects of websites. Shepherd scans a website for login fields, attempts to submit credentials and evaluates whether login was successful. We illustrate Shepherd's capabilities by means of a scan for session hijacking susceptibility. In this study, we use a set of unverified website credentials, some of which will be invalid. Using this set, Shepherd is able to fully automatically log in and verify that it is indeed logged in on 6,273 unknown sites, or 12.4% of the test set. We found that from our (biased) test set, 2,579 sites, i.e., 41.4%, are vulnerable to simple session hijacking attacks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2093774829
source Publicly Available Content Database
subjects Access control
Authentication
Automation
Cybersecurity
Internet
Websites
title Shepherd: Enabling Automatic and Large-Scale Login Security Studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T22%3A36%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Shepherd:%20Enabling%20Automatic%20and%20Large-Scale%20Login%20Security%20Studies&rft.jtitle=arXiv.org&rft.au=Jonker,%20Hugo&rft.date=2018-08-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2093774829%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20937748293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2093774829&rft_id=info:pmid/&rfr_iscdi=true