Loading…

Some remarks on L-equivalence of algebraic varieties

In this short note we study the questions of (non-)L-equivalence of algebraic varieties, in particular, for abelian varieties and K3 surfaces. We disprove the original version of a conjecture of Huybrechts (Int J Math 16(1):13–36, 2005 , Conjecture 0.3) stating that isogenous K3 surfaces are L-equiv...

Full description

Saved in:
Bibliographic Details
Published in:Selecta mathematica (Basel, Switzerland) Switzerland), 2018-09, Vol.24 (4), p.3753-3762
Main Author: Efimov, Alexander I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-5f8d8316a3648beab6ef05d8661e5f9641bf7e94e765bb089ea136b76e2975093
cites cdi_FETCH-LOGICAL-c316t-5f8d8316a3648beab6ef05d8661e5f9641bf7e94e765bb089ea136b76e2975093
container_end_page 3762
container_issue 4
container_start_page 3753
container_title Selecta mathematica (Basel, Switzerland)
container_volume 24
creator Efimov, Alexander I.
description In this short note we study the questions of (non-)L-equivalence of algebraic varieties, in particular, for abelian varieties and K3 surfaces. We disprove the original version of a conjecture of Huybrechts (Int J Math 16(1):13–36, 2005 , Conjecture 0.3) stating that isogenous K3 surfaces are L-equivalent. Moreover, we give examples of derived equivalent twisted K3 surfaces, such that the underlying K3 surfaces are not L-equivalent. We also give examples showing that D-equivalent abelian varieties can be non-L-equivalent (the same examples were obtained independently in Ito et al. Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties. arXiv:1612.08497 ). This disproves the original version of a conjecture of Kuznetsov and Shinder (Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics. Sel Math New Ser. arXiv:1612.07193 , Conjecture 1.6). We deduce the statements on (non-)L-equivalence from the very general results on the Grothendieck group of an additive category, whose morphisms are finitely generated abelian groups. In particular, we show that in such a category each stable isomorphism class of objects contains only finitely many isomorphism classes. We also show that a stable isomorphism between two objects X and Y with End ( X ) = Z implies that X and Y are isomorphic.
doi_str_mv 10.1007/s00029-017-0374-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2094545807</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2094545807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5f8d8316a3648beab6ef05d8661e5f9641bf7e94e765bb089ea136b76e2975093</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gkm8-jFL-g4EE9h2Q7KVvb3TbZFvrvTVnBk6eZw_O-wzyE3DK4ZwD6IQMAtxSYplBrQY9nZMIEB2qBw3nZgXPKDBeX5CrnVaEV5zAh4qPfYJVw49N3rvqumlPc7duDX2PXYNXHyq-XGJJvm-rgU4tDi_maXES_znjzO6fk6_npc_ZK5-8vb7PHOW1qpgYqo1mYsvlaCRPQB4UR5MIoxVBGqwQLUaMVqJUMAYxFz2oVtEJutQRbT8nd2LtN_W6PeXCrfp-6ctJxsEIKaUAXio1Uk_qcE0a3TW355-gYuJMcN8pxRY47yXHHkuFjJhe2W2L6a_4_9AOXRWYI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2094545807</pqid></control><display><type>article</type><title>Some remarks on L-equivalence of algebraic varieties</title><source>Springer Nature</source><creator>Efimov, Alexander I.</creator><creatorcontrib>Efimov, Alexander I.</creatorcontrib><description>In this short note we study the questions of (non-)L-equivalence of algebraic varieties, in particular, for abelian varieties and K3 surfaces. We disprove the original version of a conjecture of Huybrechts (Int J Math 16(1):13–36, 2005 , Conjecture 0.3) stating that isogenous K3 surfaces are L-equivalent. Moreover, we give examples of derived equivalent twisted K3 surfaces, such that the underlying K3 surfaces are not L-equivalent. We also give examples showing that D-equivalent abelian varieties can be non-L-equivalent (the same examples were obtained independently in Ito et al. Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties. arXiv:1612.08497 ). This disproves the original version of a conjecture of Kuznetsov and Shinder (Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics. Sel Math New Ser. arXiv:1612.07193 , Conjecture 1.6). We deduce the statements on (non-)L-equivalence from the very general results on the Grothendieck group of an additive category, whose morphisms are finitely generated abelian groups. In particular, we show that in such a category each stable isomorphism class of objects contains only finitely many isomorphism classes. We also show that a stable isomorphism between two objects X and Y with End ( X ) = Z implies that X and Y are isomorphic.</description><identifier>ISSN: 1022-1824</identifier><identifier>EISSN: 1420-9020</identifier><identifier>DOI: 10.1007/s00029-017-0374-y</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Equivalence ; Isomorphism ; Mathematics ; Mathematics and Statistics</subject><ispartof>Selecta mathematica (Basel, Switzerland), 2018-09, Vol.24 (4), p.3753-3762</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5f8d8316a3648beab6ef05d8661e5f9641bf7e94e765bb089ea136b76e2975093</citedby><cites>FETCH-LOGICAL-c316t-5f8d8316a3648beab6ef05d8661e5f9641bf7e94e765bb089ea136b76e2975093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Efimov, Alexander I.</creatorcontrib><title>Some remarks on L-equivalence of algebraic varieties</title><title>Selecta mathematica (Basel, Switzerland)</title><addtitle>Sel. Math. New Ser</addtitle><description>In this short note we study the questions of (non-)L-equivalence of algebraic varieties, in particular, for abelian varieties and K3 surfaces. We disprove the original version of a conjecture of Huybrechts (Int J Math 16(1):13–36, 2005 , Conjecture 0.3) stating that isogenous K3 surfaces are L-equivalent. Moreover, we give examples of derived equivalent twisted K3 surfaces, such that the underlying K3 surfaces are not L-equivalent. We also give examples showing that D-equivalent abelian varieties can be non-L-equivalent (the same examples were obtained independently in Ito et al. Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties. arXiv:1612.08497 ). This disproves the original version of a conjecture of Kuznetsov and Shinder (Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics. Sel Math New Ser. arXiv:1612.07193 , Conjecture 1.6). We deduce the statements on (non-)L-equivalence from the very general results on the Grothendieck group of an additive category, whose morphisms are finitely generated abelian groups. In particular, we show that in such a category each stable isomorphism class of objects contains only finitely many isomorphism classes. We also show that a stable isomorphism between two objects X and Y with End ( X ) = Z implies that X and Y are isomorphic.</description><subject>Algebra</subject><subject>Equivalence</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1022-1824</issn><issn>1420-9020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-gkm8-jFL-g4EE9h2Q7KVvb3TbZFvrvTVnBk6eZw_O-wzyE3DK4ZwD6IQMAtxSYplBrQY9nZMIEB2qBw3nZgXPKDBeX5CrnVaEV5zAh4qPfYJVw49N3rvqumlPc7duDX2PXYNXHyq-XGJJvm-rgU4tDi_maXES_znjzO6fk6_npc_ZK5-8vb7PHOW1qpgYqo1mYsvlaCRPQB4UR5MIoxVBGqwQLUaMVqJUMAYxFz2oVtEJutQRbT8nd2LtN_W6PeXCrfp-6ctJxsEIKaUAXio1Uk_qcE0a3TW355-gYuJMcN8pxRY47yXHHkuFjJhe2W2L6a_4_9AOXRWYI</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Efimov, Alexander I.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180901</creationdate><title>Some remarks on L-equivalence of algebraic varieties</title><author>Efimov, Alexander I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5f8d8316a3648beab6ef05d8661e5f9641bf7e94e765bb089ea136b76e2975093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Equivalence</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Efimov, Alexander I.</creatorcontrib><collection>CrossRef</collection><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Efimov, Alexander I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some remarks on L-equivalence of algebraic varieties</atitle><jtitle>Selecta mathematica (Basel, Switzerland)</jtitle><stitle>Sel. Math. New Ser</stitle><date>2018-09-01</date><risdate>2018</risdate><volume>24</volume><issue>4</issue><spage>3753</spage><epage>3762</epage><pages>3753-3762</pages><issn>1022-1824</issn><eissn>1420-9020</eissn><abstract>In this short note we study the questions of (non-)L-equivalence of algebraic varieties, in particular, for abelian varieties and K3 surfaces. We disprove the original version of a conjecture of Huybrechts (Int J Math 16(1):13–36, 2005 , Conjecture 0.3) stating that isogenous K3 surfaces are L-equivalent. Moreover, we give examples of derived equivalent twisted K3 surfaces, such that the underlying K3 surfaces are not L-equivalent. We also give examples showing that D-equivalent abelian varieties can be non-L-equivalent (the same examples were obtained independently in Ito et al. Derived equivalence and Grothendieck ring of varieties: the case of K3 surfaces of degree 12 and abelian varieties. arXiv:1612.08497 ). This disproves the original version of a conjecture of Kuznetsov and Shinder (Grothendieck ring of varieties, D- and L-equivalence, and families of quadrics. Sel Math New Ser. arXiv:1612.07193 , Conjecture 1.6). We deduce the statements on (non-)L-equivalence from the very general results on the Grothendieck group of an additive category, whose morphisms are finitely generated abelian groups. In particular, we show that in such a category each stable isomorphism class of objects contains only finitely many isomorphism classes. We also show that a stable isomorphism between two objects X and Y with End ( X ) = Z implies that X and Y are isomorphic.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00029-017-0374-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1022-1824
ispartof Selecta mathematica (Basel, Switzerland), 2018-09, Vol.24 (4), p.3753-3762
issn 1022-1824
1420-9020
language eng
recordid cdi_proquest_journals_2094545807
source Springer Nature
subjects Algebra
Equivalence
Isomorphism
Mathematics
Mathematics and Statistics
title Some remarks on L-equivalence of algebraic varieties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A15%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20remarks%20on%20L-equivalence%20of%20algebraic%20varieties&rft.jtitle=Selecta%20mathematica%20(Basel,%20Switzerland)&rft.au=Efimov,%20Alexander%20I.&rft.date=2018-09-01&rft.volume=24&rft.issue=4&rft.spage=3753&rft.epage=3762&rft.pages=3753-3762&rft.issn=1022-1824&rft.eissn=1420-9020&rft_id=info:doi/10.1007/s00029-017-0374-y&rft_dat=%3Cproquest_cross%3E2094545807%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-5f8d8316a3648beab6ef05d8661e5f9641bf7e94e765bb089ea136b76e2975093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2094545807&rft_id=info:pmid/&rfr_iscdi=true