Loading…
Numerical renormalization group method for entanglement negativity at finite temperature
We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativit...
Saved in:
Published in: | arXiv.org 2018-08 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Shim, Jeongmin H -S Sim Lee, Seung-Sup B |
description | We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contribute to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model. |
doi_str_mv | 10.48550/arxiv.1808.08506 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2095183181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2095183181</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-838e863a389d409138e726f33f103d287ca38a07e837c350d0dc1decd7b204b73</originalsourceid><addsrcrecordid>eNotTk1rwzAUM4PBStcfsJth53TPfnHsHEfZF5Tt0sNuxY1fMpfE7hynbPv1C2wnSUhIYuxGwLo0SsGdTV_-vBYGzBqMguqCLSSiKEwp5RVbjeMRAGSlpVK4YO-v00DJN7bniUJMg-39j80-Bt6lOJ34QPkjOt7GxClkG7qehpnwQN0cO_v8zW3mrQ8-E880nCjZPCW6Zpet7Uda_eOS7R4fdpvnYvv29LK53xZWyfkUGjIVWjS1K6EWs9SyahFbAeik0c1sWdBkUDeowIFrhKPG6YOE8qBxyW7_ak8pfk405v0xTinMi3sJtRIGhRH4C_fsVHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095183181</pqid></control><display><type>article</type><title>Numerical renormalization group method for entanglement negativity at finite temperature</title><source>Publicly Available Content Database</source><creator>Shim, Jeongmin ; H -S Sim ; Lee, Seung-Sup B</creator><creatorcontrib>Shim, Jeongmin ; H -S Sim ; Lee, Seung-Sup B</creatorcontrib><description>We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contribute to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1808.08506</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Entanglement ; High temperature ; Impurities ; Kondo temperature ; Mathematical models ; Numerical methods ; Power law ; Scaling ; Variation</subject><ispartof>arXiv.org, 2018-08</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2095183181?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Shim, Jeongmin</creatorcontrib><creatorcontrib>H -S Sim</creatorcontrib><creatorcontrib>Lee, Seung-Sup B</creatorcontrib><title>Numerical renormalization group method for entanglement negativity at finite temperature</title><title>arXiv.org</title><description>We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contribute to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.</description><subject>Entanglement</subject><subject>High temperature</subject><subject>Impurities</subject><subject>Kondo temperature</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Power law</subject><subject>Scaling</subject><subject>Variation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotTk1rwzAUM4PBStcfsJth53TPfnHsHEfZF5Tt0sNuxY1fMpfE7hynbPv1C2wnSUhIYuxGwLo0SsGdTV_-vBYGzBqMguqCLSSiKEwp5RVbjeMRAGSlpVK4YO-v00DJN7bniUJMg-39j80-Bt6lOJ34QPkjOt7GxClkG7qehpnwQN0cO_v8zW3mrQ8-E880nCjZPCW6Zpet7Uda_eOS7R4fdpvnYvv29LK53xZWyfkUGjIVWjS1K6EWs9SyahFbAeik0c1sWdBkUDeowIFrhKPG6YOE8qBxyW7_ak8pfk405v0xTinMi3sJtRIGhRH4C_fsVHw</recordid><startdate>20180826</startdate><enddate>20180826</enddate><creator>Shim, Jeongmin</creator><creator>H -S Sim</creator><creator>Lee, Seung-Sup B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180826</creationdate><title>Numerical renormalization group method for entanglement negativity at finite temperature</title><author>Shim, Jeongmin ; H -S Sim ; Lee, Seung-Sup B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-838e863a389d409138e726f33f103d287ca38a07e837c350d0dc1decd7b204b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Entanglement</topic><topic>High temperature</topic><topic>Impurities</topic><topic>Kondo temperature</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Power law</topic><topic>Scaling</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Shim, Jeongmin</creatorcontrib><creatorcontrib>H -S Sim</creatorcontrib><creatorcontrib>Lee, Seung-Sup B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shim, Jeongmin</au><au>H -S Sim</au><au>Lee, Seung-Sup B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical renormalization group method for entanglement negativity at finite temperature</atitle><jtitle>arXiv.org</jtitle><date>2018-08-26</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contribute to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1808.08506</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2018-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2095183181 |
source | Publicly Available Content Database |
subjects | Entanglement High temperature Impurities Kondo temperature Mathematical models Numerical methods Power law Scaling Variation |
title | Numerical renormalization group method for entanglement negativity at finite temperature |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20renormalization%20group%20method%20for%20entanglement%20negativity%20at%20finite%20temperature&rft.jtitle=arXiv.org&rft.au=Shim,%20Jeongmin&rft.date=2018-08-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1808.08506&rft_dat=%3Cproquest%3E2095183181%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-838e863a389d409138e726f33f103d287ca38a07e837c350d0dc1decd7b204b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2095183181&rft_id=info:pmid/&rfr_iscdi=true |