Loading…

Numerical renormalization group method for entanglement negativity at finite temperature

We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativit...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-08
Main Authors: Shim, Jeongmin, H -S Sim, Lee, Seung-Sup B
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Shim, Jeongmin
H -S Sim
Lee, Seung-Sup B
description We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contribute to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.
doi_str_mv 10.48550/arxiv.1808.08506
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2095183181</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2095183181</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-838e863a389d409138e726f33f103d287ca38a07e837c350d0dc1decd7b204b73</originalsourceid><addsrcrecordid>eNotTk1rwzAUM4PBStcfsJth53TPfnHsHEfZF5Tt0sNuxY1fMpfE7hynbPv1C2wnSUhIYuxGwLo0SsGdTV_-vBYGzBqMguqCLSSiKEwp5RVbjeMRAGSlpVK4YO-v00DJN7bniUJMg-39j80-Bt6lOJ34QPkjOt7GxClkG7qehpnwQN0cO_v8zW3mrQ8-E880nCjZPCW6Zpet7Uda_eOS7R4fdpvnYvv29LK53xZWyfkUGjIVWjS1K6EWs9SyahFbAeik0c1sWdBkUDeowIFrhKPG6YOE8qBxyW7_ak8pfk405v0xTinMi3sJtRIGhRH4C_fsVHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095183181</pqid></control><display><type>article</type><title>Numerical renormalization group method for entanglement negativity at finite temperature</title><source>Publicly Available Content Database</source><creator>Shim, Jeongmin ; H -S Sim ; Lee, Seung-Sup B</creator><creatorcontrib>Shim, Jeongmin ; H -S Sim ; Lee, Seung-Sup B</creatorcontrib><description>We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contribute to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1808.08506</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Entanglement ; High temperature ; Impurities ; Kondo temperature ; Mathematical models ; Numerical methods ; Power law ; Scaling ; Variation</subject><ispartof>arXiv.org, 2018-08</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2095183181?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Shim, Jeongmin</creatorcontrib><creatorcontrib>H -S Sim</creatorcontrib><creatorcontrib>Lee, Seung-Sup B</creatorcontrib><title>Numerical renormalization group method for entanglement negativity at finite temperature</title><title>arXiv.org</title><description>We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contribute to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.</description><subject>Entanglement</subject><subject>High temperature</subject><subject>Impurities</subject><subject>Kondo temperature</subject><subject>Mathematical models</subject><subject>Numerical methods</subject><subject>Power law</subject><subject>Scaling</subject><subject>Variation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotTk1rwzAUM4PBStcfsJth53TPfnHsHEfZF5Tt0sNuxY1fMpfE7hynbPv1C2wnSUhIYuxGwLo0SsGdTV_-vBYGzBqMguqCLSSiKEwp5RVbjeMRAGSlpVK4YO-v00DJN7bniUJMg-39j80-Bt6lOJ34QPkjOt7GxClkG7qehpnwQN0cO_v8zW3mrQ8-E880nCjZPCW6Zpet7Uda_eOS7R4fdpvnYvv29LK53xZWyfkUGjIVWjS1K6EWs9SyahFbAeik0c1sWdBkUDeowIFrhKPG6YOE8qBxyW7_ak8pfk405v0xTinMi3sJtRIGhRH4C_fsVHw</recordid><startdate>20180826</startdate><enddate>20180826</enddate><creator>Shim, Jeongmin</creator><creator>H -S Sim</creator><creator>Lee, Seung-Sup B</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180826</creationdate><title>Numerical renormalization group method for entanglement negativity at finite temperature</title><author>Shim, Jeongmin ; H -S Sim ; Lee, Seung-Sup B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-838e863a389d409138e726f33f103d287ca38a07e837c350d0dc1decd7b204b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Entanglement</topic><topic>High temperature</topic><topic>Impurities</topic><topic>Kondo temperature</topic><topic>Mathematical models</topic><topic>Numerical methods</topic><topic>Power law</topic><topic>Scaling</topic><topic>Variation</topic><toplevel>online_resources</toplevel><creatorcontrib>Shim, Jeongmin</creatorcontrib><creatorcontrib>H -S Sim</creatorcontrib><creatorcontrib>Lee, Seung-Sup B</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shim, Jeongmin</au><au>H -S Sim</au><au>Lee, Seung-Sup B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical renormalization group method for entanglement negativity at finite temperature</atitle><jtitle>arXiv.org</jtitle><date>2018-08-26</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We develop a numerical method to compute the negativity, an entanglement measure for mixed states, between the impurity and the bath in quantum impurity systems at finite temperature. We construct a thermal density matrix by using the numerical renormalization group (NRG), and evaluate the negativity by implementing the NRG approximation that reduces computational cost exponentially. We apply the method to the single-impurity Kondo model and the single-impurity Anderson model. In the Kondo model, the negativity exhibits a power-law scaling at temperature much lower than the Kondo temperature and a sudden death at high temperature. In the Anderson model, the charge fluctuation of the impurity contribute to the negativity even at zero temperature when the on-site Coulomb repulsion of the impurity is finite, while at low temperature the negativity between the impurity spin and the bath exhibits the same power-law scaling behavior as in the Kondo model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1808.08506</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2095183181
source Publicly Available Content Database
subjects Entanglement
High temperature
Impurities
Kondo temperature
Mathematical models
Numerical methods
Power law
Scaling
Variation
title Numerical renormalization group method for entanglement negativity at finite temperature
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T03%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20renormalization%20group%20method%20for%20entanglement%20negativity%20at%20finite%20temperature&rft.jtitle=arXiv.org&rft.au=Shim,%20Jeongmin&rft.date=2018-08-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1808.08506&rft_dat=%3Cproquest%3E2095183181%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-838e863a389d409138e726f33f103d287ca38a07e837c350d0dc1decd7b204b73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2095183181&rft_id=info:pmid/&rfr_iscdi=true