Loading…
Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer
Lung cancer continues to be a major healthcare challenge with high morbidity and mortality rates among both men and women worldwide. The majority of lung cancer cases are of non-small cell lung cancer type. With the advent of targeted cancer therapy, it is imperative not only to properly diagnose bu...
Saved in:
Published in: | arXiv.org 2019-01 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Borkowski, Andrew A Wilson, Catherine P Borkowski, Steven A Deland, Lauren A Mastorides, Stephen M |
description | Lung cancer continues to be a major healthcare challenge with high morbidity and mortality rates among both men and women worldwide. The majority of lung cancer cases are of non-small cell lung cancer type. With the advent of targeted cancer therapy, it is imperative not only to properly diagnose but also sub-classify non-small cell lung cancer. In our study, we evaluated the utility of using Apple Create ML module to detect and sub-classify non-small cell carcinomas based on histopathological images. After module optimization, the program detected 100% of non-small cell lung cancer images and successfully subclassified the majority of the images. Trained modules, such as ours, can be utilized in diagnostic smartphone-based applications, augmenting diagnostic services in understaffed areas of the world. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2095196775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2095196775</sourcerecordid><originalsourceid>FETCH-proquest_journals_20951967753</originalsourceid><addsrcrecordid>eNqNi80KgkAUhYcgSMp3uNBaGMfUXIYVLayNtQtksusf44zNjIvePokeoM058J3vzIjDgsD3thvGFsQ1pqOUsihmYRg45H4zraxhNwwC4czLppUIGXItv1jUSre26Q1YBXu0WFrg8gn5-CgFN6at3nBR0st7LgSkOEU2TseUyxL1iswrLgy6v16S9fFwTU_eoNVrRGOLTo1aTlPBaBL6SRTHYfCf9QE3v0Jo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095196775</pqid></control><display><type>article</type><title>Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer</title><source>Publicly Available Content Database</source><creator>Borkowski, Andrew A ; Wilson, Catherine P ; Borkowski, Steven A ; Deland, Lauren A ; Mastorides, Stephen M</creator><creatorcontrib>Borkowski, Andrew A ; Wilson, Catherine P ; Borkowski, Steven A ; Deland, Lauren A ; Mastorides, Stephen M</creatorcontrib><description>Lung cancer continues to be a major healthcare challenge with high morbidity and mortality rates among both men and women worldwide. The majority of lung cancer cases are of non-small cell lung cancer type. With the advent of targeted cancer therapy, it is imperative not only to properly diagnose but also sub-classify non-small cell lung cancer. In our study, we evaluated the utility of using Apple Create ML module to detect and sub-classify non-small cell carcinomas based on histopathological images. After module optimization, the program detected 100% of non-small cell lung cancer images and successfully subclassified the majority of the images. Trained modules, such as ours, can be utilized in diagnostic smartphone-based applications, augmenting diagnostic services in understaffed areas of the world.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cancer ; Diagnostic software ; Diagnostic systems ; Image classification ; Image detection ; Lung cancer ; Machine learning ; Medical imaging ; Modules ; Smartphones</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2095196775?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Borkowski, Andrew A</creatorcontrib><creatorcontrib>Wilson, Catherine P</creatorcontrib><creatorcontrib>Borkowski, Steven A</creatorcontrib><creatorcontrib>Deland, Lauren A</creatorcontrib><creatorcontrib>Mastorides, Stephen M</creatorcontrib><title>Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer</title><title>arXiv.org</title><description>Lung cancer continues to be a major healthcare challenge with high morbidity and mortality rates among both men and women worldwide. The majority of lung cancer cases are of non-small cell lung cancer type. With the advent of targeted cancer therapy, it is imperative not only to properly diagnose but also sub-classify non-small cell lung cancer. In our study, we evaluated the utility of using Apple Create ML module to detect and sub-classify non-small cell carcinomas based on histopathological images. After module optimization, the program detected 100% of non-small cell lung cancer images and successfully subclassified the majority of the images. Trained modules, such as ours, can be utilized in diagnostic smartphone-based applications, augmenting diagnostic services in understaffed areas of the world.</description><subject>Cancer</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Lung cancer</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Modules</subject><subject>Smartphones</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi80KgkAUhYcgSMp3uNBaGMfUXIYVLayNtQtksusf44zNjIvePokeoM058J3vzIjDgsD3thvGFsQ1pqOUsihmYRg45H4zraxhNwwC4czLppUIGXItv1jUSre26Q1YBXu0WFrg8gn5-CgFN6at3nBR0st7LgSkOEU2TseUyxL1iswrLgy6v16S9fFwTU_eoNVrRGOLTo1aTlPBaBL6SRTHYfCf9QE3v0Jo</recordid><startdate>20190118</startdate><enddate>20190118</enddate><creator>Borkowski, Andrew A</creator><creator>Wilson, Catherine P</creator><creator>Borkowski, Steven A</creator><creator>Deland, Lauren A</creator><creator>Mastorides, Stephen M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190118</creationdate><title>Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer</title><author>Borkowski, Andrew A ; Wilson, Catherine P ; Borkowski, Steven A ; Deland, Lauren A ; Mastorides, Stephen M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20951967753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cancer</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Lung cancer</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Modules</topic><topic>Smartphones</topic><toplevel>online_resources</toplevel><creatorcontrib>Borkowski, Andrew A</creatorcontrib><creatorcontrib>Wilson, Catherine P</creatorcontrib><creatorcontrib>Borkowski, Steven A</creatorcontrib><creatorcontrib>Deland, Lauren A</creatorcontrib><creatorcontrib>Mastorides, Stephen M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borkowski, Andrew A</au><au>Wilson, Catherine P</au><au>Borkowski, Steven A</au><au>Deland, Lauren A</au><au>Mastorides, Stephen M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer</atitle><jtitle>arXiv.org</jtitle><date>2019-01-18</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Lung cancer continues to be a major healthcare challenge with high morbidity and mortality rates among both men and women worldwide. The majority of lung cancer cases are of non-small cell lung cancer type. With the advent of targeted cancer therapy, it is imperative not only to properly diagnose but also sub-classify non-small cell lung cancer. In our study, we evaluated the utility of using Apple Create ML module to detect and sub-classify non-small cell carcinomas based on histopathological images. After module optimization, the program detected 100% of non-small cell lung cancer images and successfully subclassified the majority of the images. Trained modules, such as ours, can be utilized in diagnostic smartphone-based applications, augmenting diagnostic services in understaffed areas of the world.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2019-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2095196775 |
source | Publicly Available Content Database |
subjects | Cancer Diagnostic software Diagnostic systems Image classification Image detection Lung cancer Machine learning Medical imaging Modules Smartphones |
title | Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Using%20Apple%20Machine%20Learning%20Algorithms%20to%20Detect%20and%20Subclassify%20Non-Small%20Cell%20Lung%20Cancer&rft.jtitle=arXiv.org&rft.au=Borkowski,%20Andrew%20A&rft.date=2019-01-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2095196775%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20951967753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2095196775&rft_id=info:pmid/&rfr_iscdi=true |