Loading…

Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer

Lung cancer continues to be a major healthcare challenge with high morbidity and mortality rates among both men and women worldwide. The majority of lung cancer cases are of non-small cell lung cancer type. With the advent of targeted cancer therapy, it is imperative not only to properly diagnose bu...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2019-01
Main Authors: Borkowski, Andrew A, Wilson, Catherine P, Borkowski, Steven A, Deland, Lauren A, Mastorides, Stephen M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Borkowski, Andrew A
Wilson, Catherine P
Borkowski, Steven A
Deland, Lauren A
Mastorides, Stephen M
description Lung cancer continues to be a major healthcare challenge with high morbidity and mortality rates among both men and women worldwide. The majority of lung cancer cases are of non-small cell lung cancer type. With the advent of targeted cancer therapy, it is imperative not only to properly diagnose but also sub-classify non-small cell lung cancer. In our study, we evaluated the utility of using Apple Create ML module to detect and sub-classify non-small cell carcinomas based on histopathological images. After module optimization, the program detected 100% of non-small cell lung cancer images and successfully subclassified the majority of the images. Trained modules, such as ours, can be utilized in diagnostic smartphone-based applications, augmenting diagnostic services in understaffed areas of the world.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2095196775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2095196775</sourcerecordid><originalsourceid>FETCH-proquest_journals_20951967753</originalsourceid><addsrcrecordid>eNqNi80KgkAUhYcgSMp3uNBaGMfUXIYVLayNtQtksusf44zNjIvePokeoM058J3vzIjDgsD3thvGFsQ1pqOUsihmYRg45H4zraxhNwwC4czLppUIGXItv1jUSre26Q1YBXu0WFrg8gn5-CgFN6at3nBR0st7LgSkOEU2TseUyxL1iswrLgy6v16S9fFwTU_eoNVrRGOLTo1aTlPBaBL6SRTHYfCf9QE3v0Jo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2095196775</pqid></control><display><type>article</type><title>Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer</title><source>Publicly Available Content Database</source><creator>Borkowski, Andrew A ; Wilson, Catherine P ; Borkowski, Steven A ; Deland, Lauren A ; Mastorides, Stephen M</creator><creatorcontrib>Borkowski, Andrew A ; Wilson, Catherine P ; Borkowski, Steven A ; Deland, Lauren A ; Mastorides, Stephen M</creatorcontrib><description>Lung cancer continues to be a major healthcare challenge with high morbidity and mortality rates among both men and women worldwide. The majority of lung cancer cases are of non-small cell lung cancer type. With the advent of targeted cancer therapy, it is imperative not only to properly diagnose but also sub-classify non-small cell lung cancer. In our study, we evaluated the utility of using Apple Create ML module to detect and sub-classify non-small cell carcinomas based on histopathological images. After module optimization, the program detected 100% of non-small cell lung cancer images and successfully subclassified the majority of the images. Trained modules, such as ours, can be utilized in diagnostic smartphone-based applications, augmenting diagnostic services in understaffed areas of the world.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Cancer ; Diagnostic software ; Diagnostic systems ; Image classification ; Image detection ; Lung cancer ; Machine learning ; Medical imaging ; Modules ; Smartphones</subject><ispartof>arXiv.org, 2019-01</ispartof><rights>2019. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2095196775?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Borkowski, Andrew A</creatorcontrib><creatorcontrib>Wilson, Catherine P</creatorcontrib><creatorcontrib>Borkowski, Steven A</creatorcontrib><creatorcontrib>Deland, Lauren A</creatorcontrib><creatorcontrib>Mastorides, Stephen M</creatorcontrib><title>Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer</title><title>arXiv.org</title><description>Lung cancer continues to be a major healthcare challenge with high morbidity and mortality rates among both men and women worldwide. The majority of lung cancer cases are of non-small cell lung cancer type. With the advent of targeted cancer therapy, it is imperative not only to properly diagnose but also sub-classify non-small cell lung cancer. In our study, we evaluated the utility of using Apple Create ML module to detect and sub-classify non-small cell carcinomas based on histopathological images. After module optimization, the program detected 100% of non-small cell lung cancer images and successfully subclassified the majority of the images. Trained modules, such as ours, can be utilized in diagnostic smartphone-based applications, augmenting diagnostic services in understaffed areas of the world.</description><subject>Cancer</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Image classification</subject><subject>Image detection</subject><subject>Lung cancer</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Modules</subject><subject>Smartphones</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi80KgkAUhYcgSMp3uNBaGMfUXIYVLayNtQtksusf44zNjIvePokeoM058J3vzIjDgsD3thvGFsQ1pqOUsihmYRg45H4zraxhNwwC4czLppUIGXItv1jUSre26Q1YBXu0WFrg8gn5-CgFN6at3nBR0st7LgSkOEU2TseUyxL1iswrLgy6v16S9fFwTU_eoNVrRGOLTo1aTlPBaBL6SRTHYfCf9QE3v0Jo</recordid><startdate>20190118</startdate><enddate>20190118</enddate><creator>Borkowski, Andrew A</creator><creator>Wilson, Catherine P</creator><creator>Borkowski, Steven A</creator><creator>Deland, Lauren A</creator><creator>Mastorides, Stephen M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20190118</creationdate><title>Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer</title><author>Borkowski, Andrew A ; Wilson, Catherine P ; Borkowski, Steven A ; Deland, Lauren A ; Mastorides, Stephen M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20951967753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Cancer</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Image classification</topic><topic>Image detection</topic><topic>Lung cancer</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Modules</topic><topic>Smartphones</topic><toplevel>online_resources</toplevel><creatorcontrib>Borkowski, Andrew A</creatorcontrib><creatorcontrib>Wilson, Catherine P</creatorcontrib><creatorcontrib>Borkowski, Steven A</creatorcontrib><creatorcontrib>Deland, Lauren A</creatorcontrib><creatorcontrib>Mastorides, Stephen M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borkowski, Andrew A</au><au>Wilson, Catherine P</au><au>Borkowski, Steven A</au><au>Deland, Lauren A</au><au>Mastorides, Stephen M</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer</atitle><jtitle>arXiv.org</jtitle><date>2019-01-18</date><risdate>2019</risdate><eissn>2331-8422</eissn><abstract>Lung cancer continues to be a major healthcare challenge with high morbidity and mortality rates among both men and women worldwide. The majority of lung cancer cases are of non-small cell lung cancer type. With the advent of targeted cancer therapy, it is imperative not only to properly diagnose but also sub-classify non-small cell lung cancer. In our study, we evaluated the utility of using Apple Create ML module to detect and sub-classify non-small cell carcinomas based on histopathological images. After module optimization, the program detected 100% of non-small cell lung cancer images and successfully subclassified the majority of the images. Trained modules, such as ours, can be utilized in diagnostic smartphone-based applications, augmenting diagnostic services in understaffed areas of the world.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2019-01
issn 2331-8422
language eng
recordid cdi_proquest_journals_2095196775
source Publicly Available Content Database
subjects Cancer
Diagnostic software
Diagnostic systems
Image classification
Image detection
Lung cancer
Machine learning
Medical imaging
Modules
Smartphones
title Using Apple Machine Learning Algorithms to Detect and Subclassify Non-Small Cell Lung Cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Using%20Apple%20Machine%20Learning%20Algorithms%20to%20Detect%20and%20Subclassify%20Non-Small%20Cell%20Lung%20Cancer&rft.jtitle=arXiv.org&rft.au=Borkowski,%20Andrew%20A&rft.date=2019-01-18&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2095196775%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20951967753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2095196775&rft_id=info:pmid/&rfr_iscdi=true