Loading…

The integration of experiment and computational modelling in heterogeneously catalysed ammonia synthesis over metal nitrides

In this perspective we present recent experimental and computational progress in catalytic ammonia synthesis research on metal nitrides involving a combined approach. On this basis, it suggested that the consideration of nitrogen vacancies in the synthesis of ammonia can offer new low energy pathway...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2018, Vol.2 (34), p.2183-2188
Main Authors: Zeinalipour-Yazdi, Constantinos D, Hargreaves, Justin S. J, Laassiri, Said, Catlow, C. Richard A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this perspective we present recent experimental and computational progress in catalytic ammonia synthesis research on metal nitrides involving a combined approach. On this basis, it suggested that the consideration of nitrogen vacancies in the synthesis of ammonia can offer new low energy pathways that were previously unknown. We have shown that metal nitrides that are also known to have high activity for ammonia synthesis can readily form nitrogen vacancies on their surfaces. These vacancies adsorb dinitrogen much more strongly than the defect-free surfaces and can efficiently activate the strong N-N triple bond. These fundamental studies suggest that heterogeneously catalysed ammonia synthesis over metal nitrides is strongly affected by bulk and surface defects and that further progress in the discovery of low temperature catalysts relies on more careful consideration of nitrogen vacancies. The potential occurrence of an associative pathway in the case of the Co 3 Mo 3 N catalytic system provides a possible link with enzymatic catalysis, which will be of importance in the design of heterogeneous catalytic systems operational under process conditions of reduced severity which are necessary for the development of localised facilities for the production of more sustainable "green" ammonia. The integration of experimental studies and computational modelling is a powerful approach for the enhanced understanding of ammonia synthesis mechanisms and for the design of new catalysts.
ISSN:1463-9076
1463-9084
DOI:10.1039/c8cp04216k