Loading…

Combustion generated nanomaterials: online characterization via an ICP-MS based technique. Part II: resolving power for heterogeneous matrices

Among the available online techniques to characterize combustion generated nanomaterials, the recently developed RDD-SMPS-ICP-MS (rotating disc diluter-scanning mobility particle sizer-inductively coupled plasma-mass spectrometry) setup is here suggested, due to its ability to provide simultaneously...

Full description

Saved in:
Bibliographic Details
Published in:Journal of analytical atomic spectrometry 2018-09, Vol.33 (9), p.1500-1505
Main Authors: Foppiano, D., Tarik, M., Gubler Müller, E., Ludwig, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Among the available online techniques to characterize combustion generated nanomaterials, the recently developed RDD-SMPS-ICP-MS (rotating disc diluter-scanning mobility particle sizer-inductively coupled plasma-mass spectrometry) setup is here suggested, due to its ability to provide simultaneously size-resolved elemental and quantitative information with a high time resolution. The successful calibration strategy presented in Part I will be applied here. To assess the resolving power of the technique regarding the elemental composition, two different applications with complex heterogeneous matrixes were considered: a mixture of several metal chlorides particles generated by the reaction of metal oxides (PbO, CdO, CuO, ZnO) with CaCl 2 ·2H 2 O and secondary formed ZnO nano-objects released during the combustion of impregnated wood. The latter, especially, allowed considering the effect of the heterogeneous nature of a realistic process gas sample, where several gas species are emitted. The results of these experiments showed the ability of the SMPS-ICPMS system to distinguish and quantify the single contribution of a specific element in the overall particle size distribution (PSD).
ISSN:0267-9477
1364-5544
DOI:10.1039/C8JA00067K