Loading…
Neural network updating via argument Kalman filter for modeling of Takagi-Sugeno fuzzy models
In this article, an argument Kalman filter is exposed for the fast updating of a neural network. The argument Kalman filter is developed based on the extended Kalman filter, but the recommended scheme has the next two advantages: first, it has less computational complexity because it only employs th...
Saved in:
Published in: | Journal of intelligent & fuzzy systems 2018-01, Vol.35 (2), p.2585-2596 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this article, an argument Kalman filter is exposed for the fast updating of a neural network. The argument Kalman filter is developed based on the extended Kalman filter, but the recommended scheme has the next two advantages: first, it has less computational complexity because it only employs the Jacobian argument instead of the full Jacobian, second, its gain is ensured to be uniformly stable based on the Lyapunov approach. The commented scheme is applied for the modeling of two Takagi-Sugeno fuzzy models. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-18425 |