Loading…

Enhancing Mechanical Properties of Polyvinyl Alcohol Fiber Reinforced High Density Polyethylene Composites

In this work, high density polyethylene (HDPE)/polyvinyl alcohol (PVA) fiber composites have been fabricated via melt compounding by employing a twin-screw extruder. The resulted composites samples of four different PVA loadings (i.e. 0, 5, 10, 20 wt%) were then characterized via tensile test to inv...

Full description

Saved in:
Bibliographic Details
Published in:Key engineering materials 2018-08, Vol.777, p.27-31
Main Authors: Chafidz, Achmad, Mutiara, Tintin, Handayani, Prima A., Rizal, Muhammad, Zulkania, Ariany
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, high density polyethylene (HDPE)/polyvinyl alcohol (PVA) fiber composites have been fabricated via melt compounding by employing a twin-screw extruder. The resulted composites samples of four different PVA loadings (i.e. 0, 5, 10, 20 wt%) were then characterized via tensile test to investigate the effect of PVA loadings on their mechanical properties (i.e. modulus elasticity, tensile strength, toughness, and strain at break). Additionally, the surface morphologies of the composites (i.e. cryo-fractured and tensile fractured samples) were also studied by using a scanning electron microscopy (SEM). The SEM micrographs on the cryo-fractured sample showed that PVA fibers were perfectly embedded and well blended in HDPE matrix. Whereas, the SEM images of tensile-fractured samples showed that there was a fibrillation effect on the neat HDPE, while in the composites sample, there was an evident of broken fibers. Additionally, from the tensile test results, the modulus elasticity of the composites has increased by approximately 16, 39, and 81% (as compared to the neat HDPE) for PVAC-5, PVAC-10, and PVAC-20, respectively. Whereas, the toughness and strain at break of the composites have decreased.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.777.27