Loading…

A Priori Estimates of the Adjoint Problem Describing the Slow Flow of a Binary Mixture and a Fluid in a Channel

We obtain a priori estimates of the solution in the uniform metric for a linear conjugate initial-boundary inverse problem describing the joint motion of a binary mixture and a viscous heat-conducting liquid in a plane channel. With their help, it is established that the solution of the non-stationa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Siberian Federal University. Mathematics & Physics 2018-01, Vol.11 (4), p.482-493
Main Authors: Andreev, Victor K, Efimova, Marina V
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 493
container_issue 4
container_start_page 482
container_title Journal of Siberian Federal University. Mathematics & Physics
container_volume 11
creator Andreev, Victor K
Efimova, Marina V
description We obtain a priori estimates of the solution in the uniform metric for a linear conjugate initial-boundary inverse problem describing the joint motion of a binary mixture and a viscous heat-conducting liquid in a plane channel. With their help, it is established that the solution of the non-stationary problem with time growth tends to a stationary solution according to the exponential law when the temperature on the channel walls stabilizes with time.
doi_str_mv 10.17516/1997-1397-2018-11-4-482-493
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2098726824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098726824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-c07c8ede08dc8f569821e558907eea7a7b82e29510b11bb264f98371f05f5f5d3</originalsourceid><addsrcrecordid>eNo9kN1KAzEQhYMoWGrfIaC30Uyyu0nAm1pbFSoK6nXYn6xN2SY12UX79qatyMCZYc5hBj6EroBeg8ihuAGlBAGehFGQBIBkJJOMZIqfoBHjwElBGTtFo__kOZrEuKaUMlVknIsR8lP8GqwPFs9jbzdlbyL2Le5XBk-btbeuT76vOrPB9ybWwVbWfR7st85_48VeUr7Ed9aVYYef7U8_BINL16Tlohtsg61L42xVOme6C3TWll00k78-Rh-L-fvskSxfHp5m0yWpmaI9qamopWkMlU0t27xQkoHJc6moMKYUpagkM0zlQCuAqmJF1irJBbQ0b1M1fIwuj3e3wX8NJvZ67Yfg0kvNqJKCFZJlKXV7TNXBxxhMq7chQQg7DVQfKOs9O71np_eUNYDOdKKsE2X-Cy7GbxU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098726824</pqid></control><display><type>article</type><title>A Priori Estimates of the Adjoint Problem Describing the Slow Flow of a Binary Mixture and a Fluid in a Channel</title><source>ProQuest - Publicly Available Content Database</source><creator>Andreev, Victor K ; Efimova, Marina V</creator><creatorcontrib>Andreev, Victor K ; Efimova, Marina V ; Siberian Federal University ; Institute of computational modeling SB RAS</creatorcontrib><description>We obtain a priori estimates of the solution in the uniform metric for a linear conjugate initial-boundary inverse problem describing the joint motion of a binary mixture and a viscous heat-conducting liquid in a plane channel. With their help, it is established that the solution of the non-stationary problem with time growth tends to a stationary solution according to the exponential law when the temperature on the channel walls stabilizes with time.</description><identifier>ISSN: 1997-1397</identifier><identifier>EISSN: 2313-6022</identifier><identifier>DOI: 10.17516/1997-1397-2018-11-4-482-493</identifier><language>eng</language><publisher>Krasnoyarsk: Siberian Federal University</publisher><subject>Heat transmission ; Inverse problems</subject><ispartof>Journal of Siberian Federal University. Mathematics &amp; Physics, 2018-01, Vol.11 (4), p.482-493</ispartof><rights>2018. This work is published under NOCC (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2098726824/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2098726824?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Andreev, Victor K</creatorcontrib><creatorcontrib>Efimova, Marina V</creatorcontrib><creatorcontrib>Siberian Federal University</creatorcontrib><creatorcontrib>Institute of computational modeling SB RAS</creatorcontrib><title>A Priori Estimates of the Adjoint Problem Describing the Slow Flow of a Binary Mixture and a Fluid in a Channel</title><title>Journal of Siberian Federal University. Mathematics &amp; Physics</title><description>We obtain a priori estimates of the solution in the uniform metric for a linear conjugate initial-boundary inverse problem describing the joint motion of a binary mixture and a viscous heat-conducting liquid in a plane channel. With their help, it is established that the solution of the non-stationary problem with time growth tends to a stationary solution according to the exponential law when the temperature on the channel walls stabilizes with time.</description><subject>Heat transmission</subject><subject>Inverse problems</subject><issn>1997-1397</issn><issn>2313-6022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9kN1KAzEQhYMoWGrfIaC30Uyyu0nAm1pbFSoK6nXYn6xN2SY12UX79qatyMCZYc5hBj6EroBeg8ihuAGlBAGehFGQBIBkJJOMZIqfoBHjwElBGTtFo__kOZrEuKaUMlVknIsR8lP8GqwPFs9jbzdlbyL2Le5XBk-btbeuT76vOrPB9ybWwVbWfR7st85_48VeUr7Ed9aVYYef7U8_BINL16Tlohtsg61L42xVOme6C3TWll00k78-Rh-L-fvskSxfHp5m0yWpmaI9qamopWkMlU0t27xQkoHJc6moMKYUpagkM0zlQCuAqmJF1irJBbQ0b1M1fIwuj3e3wX8NJvZ67Yfg0kvNqJKCFZJlKXV7TNXBxxhMq7chQQg7DVQfKOs9O71np_eUNYDOdKKsE2X-Cy7GbxU</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Andreev, Victor K</creator><creator>Efimova, Marina V</creator><general>Siberian Federal University</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180101</creationdate><title>A Priori Estimates of the Adjoint Problem Describing the Slow Flow of a Binary Mixture and a Fluid in a Channel</title><author>Andreev, Victor K ; Efimova, Marina V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-c07c8ede08dc8f569821e558907eea7a7b82e29510b11bb264f98371f05f5f5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Heat transmission</topic><topic>Inverse problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andreev, Victor K</creatorcontrib><creatorcontrib>Efimova, Marina V</creatorcontrib><creatorcontrib>Siberian Federal University</creatorcontrib><creatorcontrib>Institute of computational modeling SB RAS</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of Siberian Federal University. Mathematics &amp; Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreev, Victor K</au><au>Efimova, Marina V</au><aucorp>Siberian Federal University</aucorp><aucorp>Institute of computational modeling SB RAS</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Priori Estimates of the Adjoint Problem Describing the Slow Flow of a Binary Mixture and a Fluid in a Channel</atitle><jtitle>Journal of Siberian Federal University. Mathematics &amp; Physics</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>11</volume><issue>4</issue><spage>482</spage><epage>493</epage><pages>482-493</pages><issn>1997-1397</issn><eissn>2313-6022</eissn><abstract>We obtain a priori estimates of the solution in the uniform metric for a linear conjugate initial-boundary inverse problem describing the joint motion of a binary mixture and a viscous heat-conducting liquid in a plane channel. With their help, it is established that the solution of the non-stationary problem with time growth tends to a stationary solution according to the exponential law when the temperature on the channel walls stabilizes with time.</abstract><cop>Krasnoyarsk</cop><pub>Siberian Federal University</pub><doi>10.17516/1997-1397-2018-11-4-482-493</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1997-1397
ispartof Journal of Siberian Federal University. Mathematics & Physics, 2018-01, Vol.11 (4), p.482-493
issn 1997-1397
2313-6022
language eng
recordid cdi_proquest_journals_2098726824
source ProQuest - Publicly Available Content Database
subjects Heat transmission
Inverse problems
title A Priori Estimates of the Adjoint Problem Describing the Slow Flow of a Binary Mixture and a Fluid in a Channel
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A52%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Priori%20Estimates%20of%20the%20Adjoint%20Problem%20Describing%20the%20Slow%20Flow%20of%20a%20Binary%20Mixture%20and%20a%20Fluid%20in%20a%20Channel&rft.jtitle=Journal%20of%20Siberian%20Federal%20University.%20Mathematics%20&%20Physics&rft.au=Andreev,%20Victor%20K&rft.aucorp=Siberian%20Federal%20University&rft.date=2018-01-01&rft.volume=11&rft.issue=4&rft.spage=482&rft.epage=493&rft.pages=482-493&rft.issn=1997-1397&rft.eissn=2313-6022&rft_id=info:doi/10.17516/1997-1397-2018-11-4-482-493&rft_dat=%3Cproquest_cross%3E2098726824%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c290t-c07c8ede08dc8f569821e558907eea7a7b82e29510b11bb264f98371f05f5f5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2098726824&rft_id=info:pmid/&rfr_iscdi=true