Loading…

Isoperimetric Bounds for Eigenvalues of the Wentzell-Laplace, the Laplacian and a biharmonic Steklov Problem

In this paper, we prove some isoperimetric bounds for lower order eigenvalues of the Wentzell-Laplace operator on bounded domains of a Euclidean space or a Hadamard manifold, of the Laplacian on closed hypersurfaces of a Euclidean space or a Hadamard manifold, and of a biharmonic Steklov problem on...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-08
Main Authors: Du, Feng, Mao, Jing, Qiao-Ling, Wang, Chang-Yu, Xia
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Du, Feng
Mao, Jing
Qiao-Ling, Wang
Chang-Yu, Xia
description In this paper, we prove some isoperimetric bounds for lower order eigenvalues of the Wentzell-Laplace operator on bounded domains of a Euclidean space or a Hadamard manifold, of the Laplacian on closed hypersurfaces of a Euclidean space or a Hadamard manifold, and of a biharmonic Steklov problem on bounded domains of a Euclidean space. Especially, interesting rigidity results can be obtained if sharp bounds were achieved.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2098882760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2098882760</sourcerecordid><originalsourceid>FETCH-proquest_journals_20988827603</originalsourceid><addsrcrecordid>eNqNjc0KwjAQhIMgWNR3WPBqISb-1KtSUfAgKHiUqFubmmZrknrw6S3qA3gaZr5hpsUiIeUoTsZCdFjf-4JzLqYzMZnIiJmNpwqdLjE4fYEF1fbqISMHqb6hfSpTowfKIOQIR7ThhcbEW1UZdcHhJ_0arSwoewUFZ50rV5Jt5vYB74aesHN0Nlj2WDtTxmP_p102WKWH5TquHD2an3AqqHa2QSfB50mSiNmUy_9ab3_8SSM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2098882760</pqid></control><display><type>article</type><title>Isoperimetric Bounds for Eigenvalues of the Wentzell-Laplace, the Laplacian and a biharmonic Steklov Problem</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Du, Feng ; Mao, Jing ; Qiao-Ling, Wang ; Chang-Yu, Xia</creator><creatorcontrib>Du, Feng ; Mao, Jing ; Qiao-Ling, Wang ; Chang-Yu, Xia</creatorcontrib><description>In this paper, we prove some isoperimetric bounds for lower order eigenvalues of the Wentzell-Laplace operator on bounded domains of a Euclidean space or a Hadamard manifold, of the Laplacian on closed hypersurfaces of a Euclidean space or a Hadamard manifold, and of a biharmonic Steklov problem on bounded domains of a Euclidean space. Especially, interesting rigidity results can be obtained if sharp bounds were achieved.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Domains ; Eigenvalues ; Euclidean geometry ; Euclidean space ; Hyperspaces ; Manifolds</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2098882760?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Du, Feng</creatorcontrib><creatorcontrib>Mao, Jing</creatorcontrib><creatorcontrib>Qiao-Ling, Wang</creatorcontrib><creatorcontrib>Chang-Yu, Xia</creatorcontrib><title>Isoperimetric Bounds for Eigenvalues of the Wentzell-Laplace, the Laplacian and a biharmonic Steklov Problem</title><title>arXiv.org</title><description>In this paper, we prove some isoperimetric bounds for lower order eigenvalues of the Wentzell-Laplace operator on bounded domains of a Euclidean space or a Hadamard manifold, of the Laplacian on closed hypersurfaces of a Euclidean space or a Hadamard manifold, and of a biharmonic Steklov problem on bounded domains of a Euclidean space. Especially, interesting rigidity results can be obtained if sharp bounds were achieved.</description><subject>Domains</subject><subject>Eigenvalues</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Hyperspaces</subject><subject>Manifolds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjc0KwjAQhIMgWNR3WPBqISb-1KtSUfAgKHiUqFubmmZrknrw6S3qA3gaZr5hpsUiIeUoTsZCdFjf-4JzLqYzMZnIiJmNpwqdLjE4fYEF1fbqISMHqb6hfSpTowfKIOQIR7ThhcbEW1UZdcHhJ_0arSwoewUFZ50rV5Jt5vYB74aesHN0Nlj2WDtTxmP_p102WKWH5TquHD2an3AqqHa2QSfB50mSiNmUy_9ab3_8SSM</recordid><startdate>20210816</startdate><enddate>20210816</enddate><creator>Du, Feng</creator><creator>Mao, Jing</creator><creator>Qiao-Ling, Wang</creator><creator>Chang-Yu, Xia</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210816</creationdate><title>Isoperimetric Bounds for Eigenvalues of the Wentzell-Laplace, the Laplacian and a biharmonic Steklov Problem</title><author>Du, Feng ; Mao, Jing ; Qiao-Ling, Wang ; Chang-Yu, Xia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20988827603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Domains</topic><topic>Eigenvalues</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Hyperspaces</topic><topic>Manifolds</topic><toplevel>online_resources</toplevel><creatorcontrib>Du, Feng</creatorcontrib><creatorcontrib>Mao, Jing</creatorcontrib><creatorcontrib>Qiao-Ling, Wang</creatorcontrib><creatorcontrib>Chang-Yu, Xia</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Du, Feng</au><au>Mao, Jing</au><au>Qiao-Ling, Wang</au><au>Chang-Yu, Xia</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Isoperimetric Bounds for Eigenvalues of the Wentzell-Laplace, the Laplacian and a biharmonic Steklov Problem</atitle><jtitle>arXiv.org</jtitle><date>2021-08-16</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>In this paper, we prove some isoperimetric bounds for lower order eigenvalues of the Wentzell-Laplace operator on bounded domains of a Euclidean space or a Hadamard manifold, of the Laplacian on closed hypersurfaces of a Euclidean space or a Hadamard manifold, and of a biharmonic Steklov problem on bounded domains of a Euclidean space. Especially, interesting rigidity results can be obtained if sharp bounds were achieved.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2098882760
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Domains
Eigenvalues
Euclidean geometry
Euclidean space
Hyperspaces
Manifolds
title Isoperimetric Bounds for Eigenvalues of the Wentzell-Laplace, the Laplacian and a biharmonic Steklov Problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A52%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Isoperimetric%20Bounds%20for%20Eigenvalues%20of%20the%20Wentzell-Laplace,%20the%20Laplacian%20and%20a%20biharmonic%20Steklov%20Problem&rft.jtitle=arXiv.org&rft.au=Du,%20Feng&rft.date=2021-08-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2098882760%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20988827603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2098882760&rft_id=info:pmid/&rfr_iscdi=true