Loading…
Numerical modeling of transient heating of solid plate 3D structure
The heating of flat metal products has an increasing importance in different technical applications. One of the most advanatageous heating methods is induction heating. The heat is generated within the workpiece itself. It provides high power densities and high productivity. For induction heating of...
Saved in:
Published in: | Compel 1998-01, Vol.17 (3), p.337-341 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 341 |
container_issue | 3 |
container_start_page | 337 |
container_title | Compel |
container_volume | 17 |
creator | Barglik, J. Komecza, K. Ulrych, B. Wiak, S. |
description | The heating of flat metal products has an increasing importance in different technical applications. One of the most advanatageous heating methods is induction heating. The heat is generated within the workpiece itself. It provides high power densities and high productivity. For induction heating of flat metal products two methods are applied: the longitudinal and the tranverse magnetic flux heating. In our case we have applied tranverse flux heating. This paper presents certain results of electromagnetic field obtained by means of finite element method and transient thermal field obtained by finite difference method. The analysis is made by simulating the heating phenomenon while the sophisticated software has been employed. |
doi_str_mv | 10.1108/03321649810203251 |
format | article |
fullrecord | <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_journals_209898253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>86920295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-d53e7e1deeca294f8d50b47cc12b0c8062601c540291404ee38b7de3578c24663</originalsourceid><addsrcrecordid>eNp90U1LxDAQBuAgCq4fP8Bb8aAXq5OvJj3KqquwKIjiMWTTqVa77ZqkoP_elpU9uGougeR5h8mEkAMKp5SCPgPOGc1Erikw4EzSDTJiIEUqM8g2yWi4TwewTXZCeIV-5RJGZHzbzdFXztbJvC2wrprnpC2T6G0TKmxi8oI2fh-Gtq6KZFHbiAm_SEL0nYudxz2yVdo64P73vksery4fxtfp9G5yMz6fpk4AjWkhOSqkBaKzLBelLiTMhHKOshk4DRnLgDopgOVUgEDkeqYK5FJpx0SW8V1yvKy78O17hyGaeRUc1rVtsO2CUYIryDkf5NG_kmkhmVSqh4c_4Gvb-aZ_hWGQ61wzyXtEl8j5NgSPpVn4am79p6Fghumbten3mXSZqULEj1XA-jeTKa6kEU_MXFOm5HQ6Mfe9P1l67L_D1sUqsVbaLIqy5_A7_7ujL1jYnyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209898253</pqid></control><display><type>article</type><title>Numerical modeling of transient heating of solid plate 3D structure</title><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Barglik, J. ; Komecza, K. ; Ulrych, B. ; Wiak, S.</creator><creatorcontrib>Barglik, J. ; Komecza, K. ; Ulrych, B. ; Wiak, S.</creatorcontrib><description>The heating of flat metal products has an increasing importance in different technical applications. One of the most advanatageous heating methods is induction heating. The heat is generated within the workpiece itself. It provides high power densities and high productivity. For induction heating of flat metal products two methods are applied: the longitudinal and the tranverse magnetic flux heating. In our case we have applied tranverse flux heating. This paper presents certain results of electromagnetic field obtained by means of finite element method and transient thermal field obtained by finite difference method. The analysis is made by simulating the heating phenomenon while the sophisticated software has been employed.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/03321649810203251</identifier><identifier>CODEN: CODUDU</identifier><language>eng</language><publisher>Bradford: MCB UP Ltd</publisher><subject>Computer simulation ; Electrical engineering ; Electromagnetics ; Electromagnetism ; Heating ; Heating phenomenon ; Magnetic fields ; Mathematical models ; Studies ; Thermal fields</subject><ispartof>Compel, 1998-01, Vol.17 (3), p.337-341</ispartof><rights>MCB UP Limited</rights><rights>Copyright MCB UP Limited (MCB) 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Barglik, J.</creatorcontrib><creatorcontrib>Komecza, K.</creatorcontrib><creatorcontrib>Ulrych, B.</creatorcontrib><creatorcontrib>Wiak, S.</creatorcontrib><title>Numerical modeling of transient heating of solid plate 3D structure</title><title>Compel</title><description>The heating of flat metal products has an increasing importance in different technical applications. One of the most advanatageous heating methods is induction heating. The heat is generated within the workpiece itself. It provides high power densities and high productivity. For induction heating of flat metal products two methods are applied: the longitudinal and the tranverse magnetic flux heating. In our case we have applied tranverse flux heating. This paper presents certain results of electromagnetic field obtained by means of finite element method and transient thermal field obtained by finite difference method. The analysis is made by simulating the heating phenomenon while the sophisticated software has been employed.</description><subject>Computer simulation</subject><subject>Electrical engineering</subject><subject>Electromagnetics</subject><subject>Electromagnetism</subject><subject>Heating</subject><subject>Heating phenomenon</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Studies</subject><subject>Thermal fields</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp90U1LxDAQBuAgCq4fP8Bb8aAXq5OvJj3KqquwKIjiMWTTqVa77ZqkoP_elpU9uGougeR5h8mEkAMKp5SCPgPOGc1Erikw4EzSDTJiIEUqM8g2yWi4TwewTXZCeIV-5RJGZHzbzdFXztbJvC2wrprnpC2T6G0TKmxi8oI2fh-Gtq6KZFHbiAm_SEL0nYudxz2yVdo64P73vksery4fxtfp9G5yMz6fpk4AjWkhOSqkBaKzLBelLiTMhHKOshk4DRnLgDopgOVUgEDkeqYK5FJpx0SW8V1yvKy78O17hyGaeRUc1rVtsO2CUYIryDkf5NG_kmkhmVSqh4c_4Gvb-aZ_hWGQ61wzyXtEl8j5NgSPpVn4am79p6Fghumbten3mXSZqULEj1XA-jeTKa6kEU_MXFOm5HQ6Mfe9P1l67L_D1sUqsVbaLIqy5_A7_7ujL1jYnyQ</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Barglik, J.</creator><creator>Komecza, K.</creator><creator>Ulrych, B.</creator><creator>Wiak, S.</creator><general>MCB UP Ltd</general><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>19980101</creationdate><title>Numerical modeling of transient heating of solid plate 3D structure</title><author>Barglik, J. ; Komecza, K. ; Ulrych, B. ; Wiak, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-d53e7e1deeca294f8d50b47cc12b0c8062601c540291404ee38b7de3578c24663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Computer simulation</topic><topic>Electrical engineering</topic><topic>Electromagnetics</topic><topic>Electromagnetism</topic><topic>Heating</topic><topic>Heating phenomenon</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Studies</topic><topic>Thermal fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barglik, J.</creatorcontrib><creatorcontrib>Komecza, K.</creatorcontrib><creatorcontrib>Ulrych, B.</creatorcontrib><creatorcontrib>Wiak, S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barglik, J.</au><au>Komecza, K.</au><au>Ulrych, B.</au><au>Wiak, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of transient heating of solid plate 3D structure</atitle><jtitle>Compel</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>17</volume><issue>3</issue><spage>337</spage><epage>341</epage><pages>337-341</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><coden>CODUDU</coden><abstract>The heating of flat metal products has an increasing importance in different technical applications. One of the most advanatageous heating methods is induction heating. The heat is generated within the workpiece itself. It provides high power densities and high productivity. For induction heating of flat metal products two methods are applied: the longitudinal and the tranverse magnetic flux heating. In our case we have applied tranverse flux heating. This paper presents certain results of electromagnetic field obtained by means of finite element method and transient thermal field obtained by finite difference method. The analysis is made by simulating the heating phenomenon while the sophisticated software has been employed.</abstract><cop>Bradford</cop><pub>MCB UP Ltd</pub><doi>10.1108/03321649810203251</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0332-1649 |
ispartof | Compel, 1998-01, Vol.17 (3), p.337-341 |
issn | 0332-1649 2054-5606 |
language | eng |
recordid | cdi_proquest_journals_209898253 |
source | Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list) |
subjects | Computer simulation Electrical engineering Electromagnetics Electromagnetism Heating Heating phenomenon Magnetic fields Mathematical models Studies Thermal fields |
title | Numerical modeling of transient heating of solid plate 3D structure |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20transient%20heating%20of%20solid%20plate%203D%20structure&rft.jtitle=Compel&rft.au=Barglik,%20J.&rft.date=1998-01-01&rft.volume=17&rft.issue=3&rft.spage=337&rft.epage=341&rft.pages=337-341&rft.issn=0332-1649&rft.eissn=2054-5606&rft.coden=CODUDU&rft_id=info:doi/10.1108/03321649810203251&rft_dat=%3Cproquest_emera%3E86920295%3C/proquest_emera%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-d53e7e1deeca294f8d50b47cc12b0c8062601c540291404ee38b7de3578c24663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=209898253&rft_id=info:pmid/&rfr_iscdi=true |