Loading…

Numerical modeling of transient heating of solid plate 3D structure

The heating of flat metal products has an increasing importance in different technical applications. One of the most advanatageous heating methods is induction heating. The heat is generated within the workpiece itself. It provides high power densities and high productivity. For induction heating of...

Full description

Saved in:
Bibliographic Details
Published in:Compel 1998-01, Vol.17 (3), p.337-341
Main Authors: Barglik, J., Komecza, K., Ulrych, B., Wiak, S.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 341
container_issue 3
container_start_page 337
container_title Compel
container_volume 17
creator Barglik, J.
Komecza, K.
Ulrych, B.
Wiak, S.
description The heating of flat metal products has an increasing importance in different technical applications. One of the most advanatageous heating methods is induction heating. The heat is generated within the workpiece itself. It provides high power densities and high productivity. For induction heating of flat metal products two methods are applied: the longitudinal and the tranverse magnetic flux heating. In our case we have applied tranverse flux heating. This paper presents certain results of electromagnetic field obtained by means of finite element method and transient thermal field obtained by finite difference method. The analysis is made by simulating the heating phenomenon while the sophisticated software has been employed.
doi_str_mv 10.1108/03321649810203251
format article
fullrecord <record><control><sourceid>proquest_emera</sourceid><recordid>TN_cdi_proquest_journals_209898253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>86920295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c401t-d53e7e1deeca294f8d50b47cc12b0c8062601c540291404ee38b7de3578c24663</originalsourceid><addsrcrecordid>eNp90U1LxDAQBuAgCq4fP8Bb8aAXq5OvJj3KqquwKIjiMWTTqVa77ZqkoP_elpU9uGougeR5h8mEkAMKp5SCPgPOGc1Erikw4EzSDTJiIEUqM8g2yWi4TwewTXZCeIV-5RJGZHzbzdFXztbJvC2wrprnpC2T6G0TKmxi8oI2fh-Gtq6KZFHbiAm_SEL0nYudxz2yVdo64P73vksery4fxtfp9G5yMz6fpk4AjWkhOSqkBaKzLBelLiTMhHKOshk4DRnLgDopgOVUgEDkeqYK5FJpx0SW8V1yvKy78O17hyGaeRUc1rVtsO2CUYIryDkf5NG_kmkhmVSqh4c_4Gvb-aZ_hWGQ61wzyXtEl8j5NgSPpVn4am79p6Fghumbten3mXSZqULEj1XA-jeTKa6kEU_MXFOm5HQ6Mfe9P1l67L_D1sUqsVbaLIqy5_A7_7ujL1jYnyQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>209898253</pqid></control><display><type>article</type><title>Numerical modeling of transient heating of solid plate 3D structure</title><source>Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)</source><creator>Barglik, J. ; Komecza, K. ; Ulrych, B. ; Wiak, S.</creator><creatorcontrib>Barglik, J. ; Komecza, K. ; Ulrych, B. ; Wiak, S.</creatorcontrib><description>The heating of flat metal products has an increasing importance in different technical applications. One of the most advanatageous heating methods is induction heating. The heat is generated within the workpiece itself. It provides high power densities and high productivity. For induction heating of flat metal products two methods are applied: the longitudinal and the tranverse magnetic flux heating. In our case we have applied tranverse flux heating. This paper presents certain results of electromagnetic field obtained by means of finite element method and transient thermal field obtained by finite difference method. The analysis is made by simulating the heating phenomenon while the sophisticated software has been employed.</description><identifier>ISSN: 0332-1649</identifier><identifier>EISSN: 2054-5606</identifier><identifier>DOI: 10.1108/03321649810203251</identifier><identifier>CODEN: CODUDU</identifier><language>eng</language><publisher>Bradford: MCB UP Ltd</publisher><subject>Computer simulation ; Electrical engineering ; Electromagnetics ; Electromagnetism ; Heating ; Heating phenomenon ; Magnetic fields ; Mathematical models ; Studies ; Thermal fields</subject><ispartof>Compel, 1998-01, Vol.17 (3), p.337-341</ispartof><rights>MCB UP Limited</rights><rights>Copyright MCB UP Limited (MCB) 1998</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Barglik, J.</creatorcontrib><creatorcontrib>Komecza, K.</creatorcontrib><creatorcontrib>Ulrych, B.</creatorcontrib><creatorcontrib>Wiak, S.</creatorcontrib><title>Numerical modeling of transient heating of solid plate 3D structure</title><title>Compel</title><description>The heating of flat metal products has an increasing importance in different technical applications. One of the most advanatageous heating methods is induction heating. The heat is generated within the workpiece itself. It provides high power densities and high productivity. For induction heating of flat metal products two methods are applied: the longitudinal and the tranverse magnetic flux heating. In our case we have applied tranverse flux heating. This paper presents certain results of electromagnetic field obtained by means of finite element method and transient thermal field obtained by finite difference method. The analysis is made by simulating the heating phenomenon while the sophisticated software has been employed.</description><subject>Computer simulation</subject><subject>Electrical engineering</subject><subject>Electromagnetics</subject><subject>Electromagnetism</subject><subject>Heating</subject><subject>Heating phenomenon</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Studies</subject><subject>Thermal fields</subject><issn>0332-1649</issn><issn>2054-5606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp90U1LxDAQBuAgCq4fP8Bb8aAXq5OvJj3KqquwKIjiMWTTqVa77ZqkoP_elpU9uGougeR5h8mEkAMKp5SCPgPOGc1Erikw4EzSDTJiIEUqM8g2yWi4TwewTXZCeIV-5RJGZHzbzdFXztbJvC2wrprnpC2T6G0TKmxi8oI2fh-Gtq6KZFHbiAm_SEL0nYudxz2yVdo64P73vksery4fxtfp9G5yMz6fpk4AjWkhOSqkBaKzLBelLiTMhHKOshk4DRnLgDopgOVUgEDkeqYK5FJpx0SW8V1yvKy78O17hyGaeRUc1rVtsO2CUYIryDkf5NG_kmkhmVSqh4c_4Gvb-aZ_hWGQ61wzyXtEl8j5NgSPpVn4am79p6Fghumbten3mXSZqULEj1XA-jeTKa6kEU_MXFOm5HQ6Mfe9P1l67L_D1sUqsVbaLIqy5_A7_7ujL1jYnyQ</recordid><startdate>19980101</startdate><enddate>19980101</enddate><creator>Barglik, J.</creator><creator>Komecza, K.</creator><creator>Ulrych, B.</creator><creator>Wiak, S.</creator><general>MCB UP Ltd</general><general>Emerald Group Publishing Limited</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>7SC</scope><scope>7SP</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>19980101</creationdate><title>Numerical modeling of transient heating of solid plate 3D structure</title><author>Barglik, J. ; Komecza, K. ; Ulrych, B. ; Wiak, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c401t-d53e7e1deeca294f8d50b47cc12b0c8062601c540291404ee38b7de3578c24663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Computer simulation</topic><topic>Electrical engineering</topic><topic>Electromagnetics</topic><topic>Electromagnetism</topic><topic>Heating</topic><topic>Heating phenomenon</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Studies</topic><topic>Thermal fields</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barglik, J.</creatorcontrib><creatorcontrib>Komecza, K.</creatorcontrib><creatorcontrib>Ulrych, B.</creatorcontrib><creatorcontrib>Wiak, S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>Computing Database</collection><collection>ProQuest Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Compel</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barglik, J.</au><au>Komecza, K.</au><au>Ulrych, B.</au><au>Wiak, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical modeling of transient heating of solid plate 3D structure</atitle><jtitle>Compel</jtitle><date>1998-01-01</date><risdate>1998</risdate><volume>17</volume><issue>3</issue><spage>337</spage><epage>341</epage><pages>337-341</pages><issn>0332-1649</issn><eissn>2054-5606</eissn><coden>CODUDU</coden><abstract>The heating of flat metal products has an increasing importance in different technical applications. One of the most advanatageous heating methods is induction heating. The heat is generated within the workpiece itself. It provides high power densities and high productivity. For induction heating of flat metal products two methods are applied: the longitudinal and the tranverse magnetic flux heating. In our case we have applied tranverse flux heating. This paper presents certain results of electromagnetic field obtained by means of finite element method and transient thermal field obtained by finite difference method. The analysis is made by simulating the heating phenomenon while the sophisticated software has been employed.</abstract><cop>Bradford</cop><pub>MCB UP Ltd</pub><doi>10.1108/03321649810203251</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0332-1649
ispartof Compel, 1998-01, Vol.17 (3), p.337-341
issn 0332-1649
2054-5606
language eng
recordid cdi_proquest_journals_209898253
source Emerald:Jisc Collections:Emerald Subject Collections HE and FE 2024-2026:Emerald Premier (reading list)
subjects Computer simulation
Electrical engineering
Electromagnetics
Electromagnetism
Heating
Heating phenomenon
Magnetic fields
Mathematical models
Studies
Thermal fields
title Numerical modeling of transient heating of solid plate 3D structure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_emera&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20modeling%20of%20transient%20heating%20of%20solid%20plate%203D%20structure&rft.jtitle=Compel&rft.au=Barglik,%20J.&rft.date=1998-01-01&rft.volume=17&rft.issue=3&rft.spage=337&rft.epage=341&rft.pages=337-341&rft.issn=0332-1649&rft.eissn=2054-5606&rft.coden=CODUDU&rft_id=info:doi/10.1108/03321649810203251&rft_dat=%3Cproquest_emera%3E86920295%3C/proquest_emera%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c401t-d53e7e1deeca294f8d50b47cc12b0c8062601c540291404ee38b7de3578c24663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=209898253&rft_id=info:pmid/&rfr_iscdi=true