Loading…

The locally stationary dual-tree complex wavelet model

We here harmonise two significant contributions to the field of wavelet analysis in the past two decades, namely the locally stationary wavelet process and the family of dual-tree complex wavelets. By combining these two components, we furnish a statistical model that can simultaneously access benef...

Full description

Saved in:
Bibliographic Details
Published in:Statistics and computing 2018-11, Vol.28 (6), p.1139-1154
Main Authors: Nelson, J. D. B., Gibberd, A. J., Nafornita, C., Kingsbury, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3
cites cdi_FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3
container_end_page 1154
container_issue 6
container_start_page 1139
container_title Statistics and computing
container_volume 28
creator Nelson, J. D. B.
Gibberd, A. J.
Nafornita, C.
Kingsbury, N.
description We here harmonise two significant contributions to the field of wavelet analysis in the past two decades, namely the locally stationary wavelet process and the family of dual-tree complex wavelets. By combining these two components, we furnish a statistical model that can simultaneously access benefits from these two constructions. On the one hand, our model borrows the debiased spectrum and auto-covariance estimator from the locally stationary wavelet model. On the other hand, the enhanced directional selectivity is obtained from the dual-tree complex wavelets over the regular lattice. The resulting model allows for the description and identification of wavelet fields with significantly more directional fidelity than was previously possible. The corresponding estimation theory is established for the new model, and some stationarity detection experiments illustrate its practicality.
doi_str_mv 10.1007/s11222-017-9784-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099072133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099072133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMkk12j1L8goKXeg7JdqItaVOTrdp_78oKnrzMXN7nHeZh7BLhGgHMTUEUQnBAw1vTKA5HbIK1kRylqY_ZBFoNXKJRp-yslDUAopZqwvTijaqYOhfjoSq961dp6_KhWu5d5H0mqrq02UX6qj7dB0Xqq01aUjxnJ8HFQhe_e8pe7u8Ws0c-f354mt3OeSfrtuc-qK5G5bQfhmmcFzqgFo2QGHTwXru6IdReBEkCAIRspG6U80QKvSE5ZVdj7y6n9z2V3q7TPm-Hk1ZA24IRKOWQwjHV5VRKpmB3ebUZ3rAI9kePHfXYQY_90WNhYMTIlCG7faX81_w_9A3rFWbB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099072133</pqid></control><display><type>article</type><title>The locally stationary dual-tree complex wavelet model</title><source>Springer Nature</source><creator>Nelson, J. D. B. ; Gibberd, A. J. ; Nafornita, C. ; Kingsbury, N.</creator><creatorcontrib>Nelson, J. D. B. ; Gibberd, A. J. ; Nafornita, C. ; Kingsbury, N.</creatorcontrib><description>We here harmonise two significant contributions to the field of wavelet analysis in the past two decades, namely the locally stationary wavelet process and the family of dual-tree complex wavelets. By combining these two components, we furnish a statistical model that can simultaneously access benefits from these two constructions. On the one hand, our model borrows the debiased spectrum and auto-covariance estimator from the locally stationary wavelet model. On the other hand, the enhanced directional selectivity is obtained from the dual-tree complex wavelets over the regular lattice. The resulting model allows for the description and identification of wavelet fields with significantly more directional fidelity than was previously possible. The corresponding estimation theory is established for the new model, and some stationarity detection experiments illustrate its practicality.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-017-9784-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Covariance ; Mathematics and Statistics ; Probability and Statistics in Computer Science ; Statistical models ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs ; Wavelet analysis ; Wavelet transforms</subject><ispartof>Statistics and computing, 2018-11, Vol.28 (6), p.1139-1154</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3</citedby><cites>FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nelson, J. D. B.</creatorcontrib><creatorcontrib>Gibberd, A. J.</creatorcontrib><creatorcontrib>Nafornita, C.</creatorcontrib><creatorcontrib>Kingsbury, N.</creatorcontrib><title>The locally stationary dual-tree complex wavelet model</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>We here harmonise two significant contributions to the field of wavelet analysis in the past two decades, namely the locally stationary wavelet process and the family of dual-tree complex wavelets. By combining these two components, we furnish a statistical model that can simultaneously access benefits from these two constructions. On the one hand, our model borrows the debiased spectrum and auto-covariance estimator from the locally stationary wavelet model. On the other hand, the enhanced directional selectivity is obtained from the dual-tree complex wavelets over the regular lattice. The resulting model allows for the description and identification of wavelet fields with significantly more directional fidelity than was previously possible. The corresponding estimation theory is established for the new model, and some stationarity detection experiments illustrate its practicality.</description><subject>Artificial Intelligence</subject><subject>Covariance</subject><subject>Mathematics and Statistics</subject><subject>Probability and Statistics in Computer Science</subject><subject>Statistical models</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMkk12j1L8goKXeg7JdqItaVOTrdp_78oKnrzMXN7nHeZh7BLhGgHMTUEUQnBAw1vTKA5HbIK1kRylqY_ZBFoNXKJRp-yslDUAopZqwvTijaqYOhfjoSq961dp6_KhWu5d5H0mqrq02UX6qj7dB0Xqq01aUjxnJ8HFQhe_e8pe7u8Ws0c-f354mt3OeSfrtuc-qK5G5bQfhmmcFzqgFo2QGHTwXru6IdReBEkCAIRspG6U80QKvSE5ZVdj7y6n9z2V3q7TPm-Hk1ZA24IRKOWQwjHV5VRKpmB3ebUZ3rAI9kePHfXYQY_90WNhYMTIlCG7faX81_w_9A3rFWbB</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Nelson, J. D. B.</creator><creator>Gibberd, A. J.</creator><creator>Nafornita, C.</creator><creator>Kingsbury, N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>The locally stationary dual-tree complex wavelet model</title><author>Nelson, J. D. B. ; Gibberd, A. J. ; Nafornita, C. ; Kingsbury, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Covariance</topic><topic>Mathematics and Statistics</topic><topic>Probability and Statistics in Computer Science</topic><topic>Statistical models</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nelson, J. D. B.</creatorcontrib><creatorcontrib>Gibberd, A. J.</creatorcontrib><creatorcontrib>Nafornita, C.</creatorcontrib><creatorcontrib>Kingsbury, N.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nelson, J. D. B.</au><au>Gibberd, A. J.</au><au>Nafornita, C.</au><au>Kingsbury, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The locally stationary dual-tree complex wavelet model</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>28</volume><issue>6</issue><spage>1139</spage><epage>1154</epage><pages>1139-1154</pages><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>We here harmonise two significant contributions to the field of wavelet analysis in the past two decades, namely the locally stationary wavelet process and the family of dual-tree complex wavelets. By combining these two components, we furnish a statistical model that can simultaneously access benefits from these two constructions. On the one hand, our model borrows the debiased spectrum and auto-covariance estimator from the locally stationary wavelet model. On the other hand, the enhanced directional selectivity is obtained from the dual-tree complex wavelets over the regular lattice. The resulting model allows for the description and identification of wavelet fields with significantly more directional fidelity than was previously possible. The corresponding estimation theory is established for the new model, and some stationarity detection experiments illustrate its practicality.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-017-9784-0</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-3174
ispartof Statistics and computing, 2018-11, Vol.28 (6), p.1139-1154
issn 0960-3174
1573-1375
language eng
recordid cdi_proquest_journals_2099072133
source Springer Nature
subjects Artificial Intelligence
Covariance
Mathematics and Statistics
Probability and Statistics in Computer Science
Statistical models
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Wavelet analysis
Wavelet transforms
title The locally stationary dual-tree complex wavelet model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20locally%20stationary%20dual-tree%20complex%20wavelet%20model&rft.jtitle=Statistics%20and%20computing&rft.au=Nelson,%20J.%20D.%20B.&rft.date=2018-11-01&rft.volume=28&rft.issue=6&rft.spage=1139&rft.epage=1154&rft.pages=1139-1154&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-017-9784-0&rft_dat=%3Cproquest_cross%3E2099072133%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099072133&rft_id=info:pmid/&rfr_iscdi=true