Loading…
The locally stationary dual-tree complex wavelet model
We here harmonise two significant contributions to the field of wavelet analysis in the past two decades, namely the locally stationary wavelet process and the family of dual-tree complex wavelets. By combining these two components, we furnish a statistical model that can simultaneously access benef...
Saved in:
Published in: | Statistics and computing 2018-11, Vol.28 (6), p.1139-1154 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3 |
container_end_page | 1154 |
container_issue | 6 |
container_start_page | 1139 |
container_title | Statistics and computing |
container_volume | 28 |
creator | Nelson, J. D. B. Gibberd, A. J. Nafornita, C. Kingsbury, N. |
description | We here harmonise two significant contributions to the field of wavelet analysis in the past two decades, namely the locally stationary wavelet process and the family of dual-tree complex wavelets. By combining these two components, we furnish a statistical model that can simultaneously access benefits from these two constructions. On the one hand, our model borrows the debiased spectrum and auto-covariance estimator from the locally stationary wavelet model. On the other hand, the enhanced directional selectivity is obtained from the dual-tree complex wavelets over the regular lattice. The resulting model allows for the description and identification of wavelet fields with significantly more directional fidelity than was previously possible. The corresponding estimation theory is established for the new model, and some stationarity detection experiments illustrate its practicality. |
doi_str_mv | 10.1007/s11222-017-9784-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099072133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099072133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMkk12j1L8goKXeg7JdqItaVOTrdp_78oKnrzMXN7nHeZh7BLhGgHMTUEUQnBAw1vTKA5HbIK1kRylqY_ZBFoNXKJRp-yslDUAopZqwvTijaqYOhfjoSq961dp6_KhWu5d5H0mqrq02UX6qj7dB0Xqq01aUjxnJ8HFQhe_e8pe7u8Ws0c-f354mt3OeSfrtuc-qK5G5bQfhmmcFzqgFo2QGHTwXru6IdReBEkCAIRspG6U80QKvSE5ZVdj7y6n9z2V3q7TPm-Hk1ZA24IRKOWQwjHV5VRKpmB3ebUZ3rAI9kePHfXYQY_90WNhYMTIlCG7faX81_w_9A3rFWbB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099072133</pqid></control><display><type>article</type><title>The locally stationary dual-tree complex wavelet model</title><source>Springer Nature</source><creator>Nelson, J. D. B. ; Gibberd, A. J. ; Nafornita, C. ; Kingsbury, N.</creator><creatorcontrib>Nelson, J. D. B. ; Gibberd, A. J. ; Nafornita, C. ; Kingsbury, N.</creatorcontrib><description>We here harmonise two significant contributions to the field of wavelet analysis in the past two decades, namely the locally stationary wavelet process and the family of dual-tree complex wavelets. By combining these two components, we furnish a statistical model that can simultaneously access benefits from these two constructions. On the one hand, our model borrows the debiased spectrum and auto-covariance estimator from the locally stationary wavelet model. On the other hand, the enhanced directional selectivity is obtained from the dual-tree complex wavelets over the regular lattice. The resulting model allows for the description and identification of wavelet fields with significantly more directional fidelity than was previously possible. The corresponding estimation theory is established for the new model, and some stationarity detection experiments illustrate its practicality.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-017-9784-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Covariance ; Mathematics and Statistics ; Probability and Statistics in Computer Science ; Statistical models ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs ; Wavelet analysis ; Wavelet transforms</subject><ispartof>Statistics and computing, 2018-11, Vol.28 (6), p.1139-1154</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3</citedby><cites>FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nelson, J. D. B.</creatorcontrib><creatorcontrib>Gibberd, A. J.</creatorcontrib><creatorcontrib>Nafornita, C.</creatorcontrib><creatorcontrib>Kingsbury, N.</creatorcontrib><title>The locally stationary dual-tree complex wavelet model</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>We here harmonise two significant contributions to the field of wavelet analysis in the past two decades, namely the locally stationary wavelet process and the family of dual-tree complex wavelets. By combining these two components, we furnish a statistical model that can simultaneously access benefits from these two constructions. On the one hand, our model borrows the debiased spectrum and auto-covariance estimator from the locally stationary wavelet model. On the other hand, the enhanced directional selectivity is obtained from the dual-tree complex wavelets over the regular lattice. The resulting model allows for the description and identification of wavelet fields with significantly more directional fidelity than was previously possible. The corresponding estimation theory is established for the new model, and some stationarity detection experiments illustrate its practicality.</description><subject>Artificial Intelligence</subject><subject>Covariance</subject><subject>Mathematics and Statistics</subject><subject>Probability and Statistics in Computer Science</subject><subject>Statistical models</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wNuC5-hMkk12j1L8goKXeg7JdqItaVOTrdp_78oKnrzMXN7nHeZh7BLhGgHMTUEUQnBAw1vTKA5HbIK1kRylqY_ZBFoNXKJRp-yslDUAopZqwvTijaqYOhfjoSq961dp6_KhWu5d5H0mqrq02UX6qj7dB0Xqq01aUjxnJ8HFQhe_e8pe7u8Ws0c-f354mt3OeSfrtuc-qK5G5bQfhmmcFzqgFo2QGHTwXru6IdReBEkCAIRspG6U80QKvSE5ZVdj7y6n9z2V3q7TPm-Hk1ZA24IRKOWQwjHV5VRKpmB3ebUZ3rAI9kePHfXYQY_90WNhYMTIlCG7faX81_w_9A3rFWbB</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Nelson, J. D. B.</creator><creator>Gibberd, A. J.</creator><creator>Nafornita, C.</creator><creator>Kingsbury, N.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>The locally stationary dual-tree complex wavelet model</title><author>Nelson, J. D. B. ; Gibberd, A. J. ; Nafornita, C. ; Kingsbury, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Covariance</topic><topic>Mathematics and Statistics</topic><topic>Probability and Statistics in Computer Science</topic><topic>Statistical models</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nelson, J. D. B.</creatorcontrib><creatorcontrib>Gibberd, A. J.</creatorcontrib><creatorcontrib>Nafornita, C.</creatorcontrib><creatorcontrib>Kingsbury, N.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nelson, J. D. B.</au><au>Gibberd, A. J.</au><au>Nafornita, C.</au><au>Kingsbury, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The locally stationary dual-tree complex wavelet model</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>28</volume><issue>6</issue><spage>1139</spage><epage>1154</epage><pages>1139-1154</pages><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>We here harmonise two significant contributions to the field of wavelet analysis in the past two decades, namely the locally stationary wavelet process and the family of dual-tree complex wavelets. By combining these two components, we furnish a statistical model that can simultaneously access benefits from these two constructions. On the one hand, our model borrows the debiased spectrum and auto-covariance estimator from the locally stationary wavelet model. On the other hand, the enhanced directional selectivity is obtained from the dual-tree complex wavelets over the regular lattice. The resulting model allows for the description and identification of wavelet fields with significantly more directional fidelity than was previously possible. The corresponding estimation theory is established for the new model, and some stationarity detection experiments illustrate its practicality.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-017-9784-0</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-3174 |
ispartof | Statistics and computing, 2018-11, Vol.28 (6), p.1139-1154 |
issn | 0960-3174 1573-1375 |
language | eng |
recordid | cdi_proquest_journals_2099072133 |
source | Springer Nature |
subjects | Artificial Intelligence Covariance Mathematics and Statistics Probability and Statistics in Computer Science Statistical models Statistical Theory and Methods Statistics Statistics and Computing/Statistics Programs Wavelet analysis Wavelet transforms |
title | The locally stationary dual-tree complex wavelet model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A10%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20locally%20stationary%20dual-tree%20complex%20wavelet%20model&rft.jtitle=Statistics%20and%20computing&rft.au=Nelson,%20J.%20D.%20B.&rft.date=2018-11-01&rft.volume=28&rft.issue=6&rft.spage=1139&rft.epage=1154&rft.pages=1139-1154&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-017-9784-0&rft_dat=%3Cproquest_cross%3E2099072133%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-bf4c514a6b14a78ab26f1628231f6fbb6a58e16b2f3e20002383684abee41b7e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099072133&rft_id=info:pmid/&rfr_iscdi=true |