Loading…

Auxiliary variables for Bayesian inference in multi-class queueing networks

Queueing networks describe complex stochastic systems of both theoretical and practical interest. They provide the means to assess alterations, diagnose poor performance and evaluate robustness across sets of interconnected resources. In the present paper, we focus on the underlying continuous-time...

Full description

Saved in:
Bibliographic Details
Published in:Statistics and computing 2018-11, Vol.28 (6), p.1187-1200
Main Authors: Perez, Iker, Hodge, David, Kypraios, Theodore
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-f862766f862ee7404e89152b18670b8dea1f1a9efc25bf467ead3bc2be368b6c3
cites cdi_FETCH-LOGICAL-c316t-f862766f862ee7404e89152b18670b8dea1f1a9efc25bf467ead3bc2be368b6c3
container_end_page 1200
container_issue 6
container_start_page 1187
container_title Statistics and computing
container_volume 28
creator Perez, Iker
Hodge, David
Kypraios, Theodore
description Queueing networks describe complex stochastic systems of both theoretical and practical interest. They provide the means to assess alterations, diagnose poor performance and evaluate robustness across sets of interconnected resources. In the present paper, we focus on the underlying continuous-time Markov chains induced by these networks, and we present a flexible method for drawing parameter inference in multi-class Markovian cases with switching and different service disciplines. The approach is directed towards the inferential problem with missing data, where transition paths of individual tasks among the queues are often unknown. The paper introduces a slice sampling technique with mappings to the measurable space of task transitions between the service stations. This can address time and tractability issues in computational procedures, handle prior system knowledge and overcome common restrictions on service rates across existing inferential frameworks. Finally, the proposed algorithm is validated on synthetic data and applied to a real data set, obtained from a service delivery tasking tool implemented in two university hospitals.
doi_str_mv 10.1007/s11222-017-9787-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2099072573</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099072573</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f862766f862ee7404e89152b18670b8dea1f1a9efc25bf467ead3bc2be368b6c3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9giMRt8dmInY6mgICqxwGw56blySZ1iJ9D-e1wFiYnpbnjv3b2PkGtgt8CYuosAnHPKQNFKlYruT8gECiUoCFWckgmrJKMCVH5OLmLcMAYgRT4hL7Nh71pnwiH7MsGZusWY2S5k9-aA0RmfOW8xoG8wbdl2aHtHm9bEmH0OOKDz68xj_92Fj3hJzqxpI179zil5f3x4mz_R5evieT5b0kaA7KktJVdSHgeiylmOZQUFr6GUitXlCg1YMBXahhe1zaVCsxJ1w2sUsqxlI6bkZszdhS49EXu96Ybg00nNWVUxxVPxpIJR1YQuxoBW74LbpqIamD4y0yMznZjpIzO9Tx4-emLS-jWGv-T_TT-RCHBb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099072573</pqid></control><display><type>article</type><title>Auxiliary variables for Bayesian inference in multi-class queueing networks</title><source>Springer Link</source><creator>Perez, Iker ; Hodge, David ; Kypraios, Theodore</creator><creatorcontrib>Perez, Iker ; Hodge, David ; Kypraios, Theodore</creatorcontrib><description>Queueing networks describe complex stochastic systems of both theoretical and practical interest. They provide the means to assess alterations, diagnose poor performance and evaluate robustness across sets of interconnected resources. In the present paper, we focus on the underlying continuous-time Markov chains induced by these networks, and we present a flexible method for drawing parameter inference in multi-class Markovian cases with switching and different service disciplines. The approach is directed towards the inferential problem with missing data, where transition paths of individual tasks among the queues are often unknown. The paper introduces a slice sampling technique with mappings to the measurable space of task transitions between the service stations. This can address time and tractability issues in computational procedures, handle prior system knowledge and overcome common restrictions on service rates across existing inferential frameworks. Finally, the proposed algorithm is validated on synthetic data and applied to a real data set, obtained from a service delivery tasking tool implemented in two university hospitals.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-017-9787-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Bayesian analysis ; Markov analysis ; Markov chains ; Mathematics and Statistics ; Missing data ; Networks ; Probability and Statistics in Computer Science ; Queues ; Queuing theory ; Service stations ; Statistical inference ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs ; Stochastic systems ; Switching theory</subject><ispartof>Statistics and computing, 2018-11, Vol.28 (6), p.1187-1200</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f862766f862ee7404e89152b18670b8dea1f1a9efc25bf467ead3bc2be368b6c3</citedby><cites>FETCH-LOGICAL-c316t-f862766f862ee7404e89152b18670b8dea1f1a9efc25bf467ead3bc2be368b6c3</cites><orcidid>0000-0001-9400-4229</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Perez, Iker</creatorcontrib><creatorcontrib>Hodge, David</creatorcontrib><creatorcontrib>Kypraios, Theodore</creatorcontrib><title>Auxiliary variables for Bayesian inference in multi-class queueing networks</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>Queueing networks describe complex stochastic systems of both theoretical and practical interest. They provide the means to assess alterations, diagnose poor performance and evaluate robustness across sets of interconnected resources. In the present paper, we focus on the underlying continuous-time Markov chains induced by these networks, and we present a flexible method for drawing parameter inference in multi-class Markovian cases with switching and different service disciplines. The approach is directed towards the inferential problem with missing data, where transition paths of individual tasks among the queues are often unknown. The paper introduces a slice sampling technique with mappings to the measurable space of task transitions between the service stations. This can address time and tractability issues in computational procedures, handle prior system knowledge and overcome common restrictions on service rates across existing inferential frameworks. Finally, the proposed algorithm is validated on synthetic data and applied to a real data set, obtained from a service delivery tasking tool implemented in two university hospitals.</description><subject>Artificial Intelligence</subject><subject>Bayesian analysis</subject><subject>Markov analysis</subject><subject>Markov chains</subject><subject>Mathematics and Statistics</subject><subject>Missing data</subject><subject>Networks</subject><subject>Probability and Statistics in Computer Science</subject><subject>Queues</subject><subject>Queuing theory</subject><subject>Service stations</subject><subject>Statistical inference</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><subject>Stochastic systems</subject><subject>Switching theory</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9giMRt8dmInY6mgICqxwGw56blySZ1iJ9D-e1wFiYnpbnjv3b2PkGtgt8CYuosAnHPKQNFKlYruT8gECiUoCFWckgmrJKMCVH5OLmLcMAYgRT4hL7Nh71pnwiH7MsGZusWY2S5k9-aA0RmfOW8xoG8wbdl2aHtHm9bEmH0OOKDz68xj_92Fj3hJzqxpI179zil5f3x4mz_R5evieT5b0kaA7KktJVdSHgeiylmOZQUFr6GUitXlCg1YMBXahhe1zaVCsxJ1w2sUsqxlI6bkZszdhS49EXu96Ybg00nNWVUxxVPxpIJR1YQuxoBW74LbpqIamD4y0yMznZjpIzO9Tx4-emLS-jWGv-T_TT-RCHBb</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Perez, Iker</creator><creator>Hodge, David</creator><creator>Kypraios, Theodore</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9400-4229</orcidid></search><sort><creationdate>20181101</creationdate><title>Auxiliary variables for Bayesian inference in multi-class queueing networks</title><author>Perez, Iker ; Hodge, David ; Kypraios, Theodore</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f862766f862ee7404e89152b18670b8dea1f1a9efc25bf467ead3bc2be368b6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Bayesian analysis</topic><topic>Markov analysis</topic><topic>Markov chains</topic><topic>Mathematics and Statistics</topic><topic>Missing data</topic><topic>Networks</topic><topic>Probability and Statistics in Computer Science</topic><topic>Queues</topic><topic>Queuing theory</topic><topic>Service stations</topic><topic>Statistical inference</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><topic>Stochastic systems</topic><topic>Switching theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez, Iker</creatorcontrib><creatorcontrib>Hodge, David</creatorcontrib><creatorcontrib>Kypraios, Theodore</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez, Iker</au><au>Hodge, David</au><au>Kypraios, Theodore</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Auxiliary variables for Bayesian inference in multi-class queueing networks</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>28</volume><issue>6</issue><spage>1187</spage><epage>1200</epage><pages>1187-1200</pages><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>Queueing networks describe complex stochastic systems of both theoretical and practical interest. They provide the means to assess alterations, diagnose poor performance and evaluate robustness across sets of interconnected resources. In the present paper, we focus on the underlying continuous-time Markov chains induced by these networks, and we present a flexible method for drawing parameter inference in multi-class Markovian cases with switching and different service disciplines. The approach is directed towards the inferential problem with missing data, where transition paths of individual tasks among the queues are often unknown. The paper introduces a slice sampling technique with mappings to the measurable space of task transitions between the service stations. This can address time and tractability issues in computational procedures, handle prior system knowledge and overcome common restrictions on service rates across existing inferential frameworks. Finally, the proposed algorithm is validated on synthetic data and applied to a real data set, obtained from a service delivery tasking tool implemented in two university hospitals.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-017-9787-x</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-9400-4229</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-3174
ispartof Statistics and computing, 2018-11, Vol.28 (6), p.1187-1200
issn 0960-3174
1573-1375
language eng
recordid cdi_proquest_journals_2099072573
source Springer Link
subjects Artificial Intelligence
Bayesian analysis
Markov analysis
Markov chains
Mathematics and Statistics
Missing data
Networks
Probability and Statistics in Computer Science
Queues
Queuing theory
Service stations
Statistical inference
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Stochastic systems
Switching theory
title Auxiliary variables for Bayesian inference in multi-class queueing networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T02%3A19%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Auxiliary%20variables%20for%20Bayesian%20inference%20in%20multi-class%20queueing%20networks&rft.jtitle=Statistics%20and%20computing&rft.au=Perez,%20Iker&rft.date=2018-11-01&rft.volume=28&rft.issue=6&rft.spage=1187&rft.epage=1200&rft.pages=1187-1200&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-017-9787-x&rft_dat=%3Cproquest_cross%3E2099072573%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f862766f862ee7404e89152b18670b8dea1f1a9efc25bf467ead3bc2be368b6c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099072573&rft_id=info:pmid/&rfr_iscdi=true