Loading…

A Hierarchical Framework for Correcting Under-Reporting in Count Data

Tuberculosis poses a global health risk and Brazil is among the top twenty countries by absolute mortality. However, this epidemiological burden is masked by under-reporting, which impairs planning for effective intervention. We present a comprehensive investigation and application of a Bayesian hie...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-09
Main Authors: Stoner, Oliver, Economou, Theo, Drummond, Gabriela
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Stoner, Oliver
Economou, Theo
Drummond, Gabriela
description Tuberculosis poses a global health risk and Brazil is among the top twenty countries by absolute mortality. However, this epidemiological burden is masked by under-reporting, which impairs planning for effective intervention. We present a comprehensive investigation and application of a Bayesian hierarchical approach to modelling and correcting under-reporting in tuberculosis counts, a general problem arising in observational count data. The framework is applicable to fully under-reported data, relying only on an informative prior distribution for the mean reporting rate to supplement the partial information in the data. Covariates are used to inform both the true count generating process and the under-reporting mechanism, while also allowing for complex spatio-temporal structures. We present several sensitivity analyses based on simulation experiments to aid the elicitation of the prior distribution for the mean reporting rate and decisions relating to the inclusion of covariates. Both prior and posterior predictive model checking are presented, as well as a critical evaluation of the approach.
doi_str_mv 10.48550/arxiv.1809.00544
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2099745158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2099745158</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-a55b659a46a5c158b516170b03d4872f2dbc0efbe4230bbecf91f310de5b8993</originalsourceid><addsrcrecordid>eNotjUtLw0AUhQdBsNT-AHcDrhPvPG4ysyyxtYWC4GNdZpIZTa2ZepOoP9-gbs7h8MF3GLsSkGuDCDeOvtvPXBiwOQBqfcZmUimRGS3lBVv0_QEAZFFKRDVjqyXftIEc1a9t7Y58Te49fCV64zERrxJRqIe2e-HPXRMoewinRL-77SY6dgO_dYO7ZOfRHfuw-O85e1yvnqpNtru_21bLXeZQminQF2idLhzWAo1HUYgSPKhGm1JG2fgaQvRBSwXehzpaEZWAJqA31qo5u_6znih9jKEf9oc0Ujcd7iVYW2qcpOoHcRpL2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099745158</pqid></control><display><type>article</type><title>A Hierarchical Framework for Correcting Under-Reporting in Count Data</title><source>Publicly Available Content (ProQuest)</source><creator>Stoner, Oliver ; Economou, Theo ; Drummond, Gabriela</creator><creatorcontrib>Stoner, Oliver ; Economou, Theo ; Drummond, Gabriela</creatorcontrib><description>Tuberculosis poses a global health risk and Brazil is among the top twenty countries by absolute mortality. However, this epidemiological burden is masked by under-reporting, which impairs planning for effective intervention. We present a comprehensive investigation and application of a Bayesian hierarchical approach to modelling and correcting under-reporting in tuberculosis counts, a general problem arising in observational count data. The framework is applicable to fully under-reported data, relying only on an informative prior distribution for the mean reporting rate to supplement the partial information in the data. Covariates are used to inform both the true count generating process and the under-reporting mechanism, while also allowing for complex spatio-temporal structures. We present several sensitivity analyses based on simulation experiments to aid the elicitation of the prior distribution for the mean reporting rate and decisions relating to the inclusion of covariates. Both prior and posterior predictive model checking are presented, as well as a critical evaluation of the approach.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1809.00544</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Computer simulation ; Epidemiology ; Sensitivity analysis ; Tuberculosis</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2099745158?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Stoner, Oliver</creatorcontrib><creatorcontrib>Economou, Theo</creatorcontrib><creatorcontrib>Drummond, Gabriela</creatorcontrib><title>A Hierarchical Framework for Correcting Under-Reporting in Count Data</title><title>arXiv.org</title><description>Tuberculosis poses a global health risk and Brazil is among the top twenty countries by absolute mortality. However, this epidemiological burden is masked by under-reporting, which impairs planning for effective intervention. We present a comprehensive investigation and application of a Bayesian hierarchical approach to modelling and correcting under-reporting in tuberculosis counts, a general problem arising in observational count data. The framework is applicable to fully under-reported data, relying only on an informative prior distribution for the mean reporting rate to supplement the partial information in the data. Covariates are used to inform both the true count generating process and the under-reporting mechanism, while also allowing for complex spatio-temporal structures. We present several sensitivity analyses based on simulation experiments to aid the elicitation of the prior distribution for the mean reporting rate and decisions relating to the inclusion of covariates. Both prior and posterior predictive model checking are presented, as well as a critical evaluation of the approach.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Epidemiology</subject><subject>Sensitivity analysis</subject><subject>Tuberculosis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLw0AUhQdBsNT-AHcDrhPvPG4ysyyxtYWC4GNdZpIZTa2ZepOoP9-gbs7h8MF3GLsSkGuDCDeOvtvPXBiwOQBqfcZmUimRGS3lBVv0_QEAZFFKRDVjqyXftIEc1a9t7Y58Te49fCV64zERrxJRqIe2e-HPXRMoewinRL-77SY6dgO_dYO7ZOfRHfuw-O85e1yvnqpNtru_21bLXeZQminQF2idLhzWAo1HUYgSPKhGm1JG2fgaQvRBSwXehzpaEZWAJqA31qo5u_6znih9jKEf9oc0Ujcd7iVYW2qcpOoHcRpL2w</recordid><startdate>20180903</startdate><enddate>20180903</enddate><creator>Stoner, Oliver</creator><creator>Economou, Theo</creator><creator>Drummond, Gabriela</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180903</creationdate><title>A Hierarchical Framework for Correcting Under-Reporting in Count Data</title><author>Stoner, Oliver ; Economou, Theo ; Drummond, Gabriela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-a55b659a46a5c158b516170b03d4872f2dbc0efbe4230bbecf91f310de5b8993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Epidemiology</topic><topic>Sensitivity analysis</topic><topic>Tuberculosis</topic><toplevel>online_resources</toplevel><creatorcontrib>Stoner, Oliver</creatorcontrib><creatorcontrib>Economou, Theo</creatorcontrib><creatorcontrib>Drummond, Gabriela</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stoner, Oliver</au><au>Economou, Theo</au><au>Drummond, Gabriela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Hierarchical Framework for Correcting Under-Reporting in Count Data</atitle><jtitle>arXiv.org</jtitle><date>2018-09-03</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Tuberculosis poses a global health risk and Brazil is among the top twenty countries by absolute mortality. However, this epidemiological burden is masked by under-reporting, which impairs planning for effective intervention. We present a comprehensive investigation and application of a Bayesian hierarchical approach to modelling and correcting under-reporting in tuberculosis counts, a general problem arising in observational count data. The framework is applicable to fully under-reported data, relying only on an informative prior distribution for the mean reporting rate to supplement the partial information in the data. Covariates are used to inform both the true count generating process and the under-reporting mechanism, while also allowing for complex spatio-temporal structures. We present several sensitivity analyses based on simulation experiments to aid the elicitation of the prior distribution for the mean reporting rate and decisions relating to the inclusion of covariates. Both prior and posterior predictive model checking are presented, as well as a critical evaluation of the approach.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1809.00544</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2099745158
source Publicly Available Content (ProQuest)
subjects Bayesian analysis
Computer simulation
Epidemiology
Sensitivity analysis
Tuberculosis
title A Hierarchical Framework for Correcting Under-Reporting in Count Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A31%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Hierarchical%20Framework%20for%20Correcting%20Under-Reporting%20in%20Count%20Data&rft.jtitle=arXiv.org&rft.au=Stoner,%20Oliver&rft.date=2018-09-03&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1809.00544&rft_dat=%3Cproquest%3E2099745158%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-a55b659a46a5c158b516170b03d4872f2dbc0efbe4230bbecf91f310de5b8993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2099745158&rft_id=info:pmid/&rfr_iscdi=true