Loading…

Effects of endogenous ascorbic acid on resistance to high-temperature stress in excised rice leaves

Ascorbic acid (Asc) is a major plant antioxidant. L-galactono-1,4-lactone dehydrogenase (GLDH) is an enzyme that catalyzes the last step of Asc biosynthesis in higher plants. Effects of endogenous Asc on resistance to high-temperature stress were studied by using GLDH-overexpressed (GO-2) and GLDH-s...

Full description

Saved in:
Bibliographic Details
Published in:Photosynthetica 2018-12, Vol.56 (4), p.1453-1458
Main Authors: Zhang, Q.L., Wei, Y.X., Peng, C.L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ascorbic acid (Asc) is a major plant antioxidant. L-galactono-1,4-lactone dehydrogenase (GLDH) is an enzyme that catalyzes the last step of Asc biosynthesis in higher plants. Effects of endogenous Asc on resistance to high-temperature stress were studied by using GLDH-overexpressed (GO-2) and GLDH-suppressed transgenic rice (GI-2) as experimental materials. After high-temperature treatment, the maximal quantum yield of PSII was significantly lower in GI-2, and higher in GO-2 compared to wild type rice. The content of reactive oxygen species (ROS) was the highest in GI-2. The higher Asc content resulted in lower lipid peroxidation in GO-2. The contents of chlorophyll, soluble proteins, and Rubisco large and small subunit were positively correlated to the Asc content. These results show that the higher Asc content reduced the accumulation of ROS and maintained the function of rice leaves. We suggest that the higher Asc content could improve the rice resistance to high-temperature stress.
ISSN:0300-3604
1573-9058
DOI:10.1007/s11099-018-0836-2