Loading…

In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution

In order to improve the surface mechanical performance of Ti-6Al-4V alloy, in-situ TiC-TiB2 composite coating was deposited by tungsten inert gas (TIG) cladding process using Ti and B4C as precursor powder. Based on the available literature, SEM images of the blended precursor powder mixture and coa...

Full description

Saved in:
Bibliographic Details
Published in:Surface & coatings technology 2018-06, Vol.344, p.541
Main Authors: Tijo, D, Masanta, Manoj, Das, Alok Kumar
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page 541
container_title Surface & coatings technology
container_volume 344
creator Tijo, D
Masanta, Manoj
Das, Alok Kumar
description In order to improve the surface mechanical performance of Ti-6Al-4V alloy, in-situ TiC-TiB2 composite coating was deposited by tungsten inert gas (TIG) cladding process using Ti and B4C as precursor powder. Based on the available literature, SEM images of the blended precursor powder mixture and coating layer, electron probe micro analysis (EPMA) and corresponding XRD analysis of the produced coating, the formation mechanism of the present TiC-TiB2 composite coating during TIG cladding process was elucidated. The analysis shows that in the coating, TiB2 and TiB phases appeared as hexagonal or rectangular shape, whereas TiC as spherical shape within the matrix of unreacted Ti, Ti-6Al-4V alloy form the substrate and intermetallic phase like TiAl3 formed during the cladding process. The analysis also revealed that the TIG cladding processing current and scan speed have substantial effect on the coating morphology and the phases formed in the coating.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2100878645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2100878645</sourcerecordid><originalsourceid>FETCH-proquest_journals_21008786453</originalsourceid><addsrcrecordid>eNqNi7tOwzAUQC0EEgH6D1digcHIebRO2KCiNAMSQ8TYyk3c4Mr4gu81Uid-nSLxAZ3OcM45EVle60aWZaVPRaaKqZZ1o4tzcUG0U0rluqky8dMGSY4TdG4uO_e4orSBYgU9GnZhBAwHI2cPXlZvYLzHPWz2wCmMxDaACzYyjIbgpmufb6H3Zhj-vg_L7zjcw6uJLNs7eHF9ROKYek7Rgv1Gn9hhuBJnW-PJTv55Ka4XT918KT8jfiVLvN5hiuGg1kWuVK3rWTUtj6t-ASNBTwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100878645</pqid></control><display><type>article</type><title>In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution</title><source>Elsevier</source><creator>Tijo, D ; Masanta, Manoj ; Das, Alok Kumar</creator><creatorcontrib>Tijo, D ; Masanta, Manoj ; Das, Alok Kumar</creatorcontrib><description>In order to improve the surface mechanical performance of Ti-6Al-4V alloy, in-situ TiC-TiB2 composite coating was deposited by tungsten inert gas (TIG) cladding process using Ti and B4C as precursor powder. Based on the available literature, SEM images of the blended precursor powder mixture and coating layer, electron probe micro analysis (EPMA) and corresponding XRD analysis of the produced coating, the formation mechanism of the present TiC-TiB2 composite coating during TIG cladding process was elucidated. The analysis shows that in the coating, TiB2 and TiB phases appeared as hexagonal or rectangular shape, whereas TiC as spherical shape within the matrix of unreacted Ti, Ti-6Al-4V alloy form the substrate and intermetallic phase like TiAl3 formed during the cladding process. The analysis also revealed that the TIG cladding processing current and scan speed have substantial effect on the coating morphology and the phases formed in the coating.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Analysis ; Boron carbide ; Chemical reactions ; Cladding ; Coating effects ; Electron probes ; Intermetallic phases ; Matrix ; Mechanical properties ; Microstructure ; Morphology ; Precursors ; Protective coatings ; Rare gases ; Substrates ; Titanium base alloys ; Titanium carbide ; Titanium diboride</subject><ispartof>Surface &amp; coatings technology, 2018-06, Vol.344, p.541</ispartof><rights>Copyright Elsevier BV Jun 25, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Tijo, D</creatorcontrib><creatorcontrib>Masanta, Manoj</creatorcontrib><creatorcontrib>Das, Alok Kumar</creatorcontrib><title>In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution</title><title>Surface &amp; coatings technology</title><description>In order to improve the surface mechanical performance of Ti-6Al-4V alloy, in-situ TiC-TiB2 composite coating was deposited by tungsten inert gas (TIG) cladding process using Ti and B4C as precursor powder. Based on the available literature, SEM images of the blended precursor powder mixture and coating layer, electron probe micro analysis (EPMA) and corresponding XRD analysis of the produced coating, the formation mechanism of the present TiC-TiB2 composite coating during TIG cladding process was elucidated. The analysis shows that in the coating, TiB2 and TiB phases appeared as hexagonal or rectangular shape, whereas TiC as spherical shape within the matrix of unreacted Ti, Ti-6Al-4V alloy form the substrate and intermetallic phase like TiAl3 formed during the cladding process. The analysis also revealed that the TIG cladding processing current and scan speed have substantial effect on the coating morphology and the phases formed in the coating.</description><subject>Analysis</subject><subject>Boron carbide</subject><subject>Chemical reactions</subject><subject>Cladding</subject><subject>Coating effects</subject><subject>Electron probes</subject><subject>Intermetallic phases</subject><subject>Matrix</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Precursors</subject><subject>Protective coatings</subject><subject>Rare gases</subject><subject>Substrates</subject><subject>Titanium base alloys</subject><subject>Titanium carbide</subject><subject>Titanium diboride</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNi7tOwzAUQC0EEgH6D1digcHIebRO2KCiNAMSQ8TYyk3c4Mr4gu81Uid-nSLxAZ3OcM45EVle60aWZaVPRaaKqZZ1o4tzcUG0U0rluqky8dMGSY4TdG4uO_e4orSBYgU9GnZhBAwHI2cPXlZvYLzHPWz2wCmMxDaACzYyjIbgpmufb6H3Zhj-vg_L7zjcw6uJLNs7eHF9ROKYek7Rgv1Gn9hhuBJnW-PJTv55Ka4XT918KT8jfiVLvN5hiuGg1kWuVK3rWTUtj6t-ASNBTwI</recordid><startdate>20180625</startdate><enddate>20180625</enddate><creator>Tijo, D</creator><creator>Masanta, Manoj</creator><creator>Das, Alok Kumar</creator><general>Elsevier BV</general><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180625</creationdate><title>In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution</title><author>Tijo, D ; Masanta, Manoj ; Das, Alok Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21008786453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Boron carbide</topic><topic>Chemical reactions</topic><topic>Cladding</topic><topic>Coating effects</topic><topic>Electron probes</topic><topic>Intermetallic phases</topic><topic>Matrix</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Precursors</topic><topic>Protective coatings</topic><topic>Rare gases</topic><topic>Substrates</topic><topic>Titanium base alloys</topic><topic>Titanium carbide</topic><topic>Titanium diboride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tijo, D</creatorcontrib><creatorcontrib>Masanta, Manoj</creatorcontrib><creatorcontrib>Das, Alok Kumar</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface &amp; coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tijo, D</au><au>Masanta, Manoj</au><au>Das, Alok Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution</atitle><jtitle>Surface &amp; coatings technology</jtitle><date>2018-06-25</date><risdate>2018</risdate><volume>344</volume><spage>541</spage><pages>541-</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>In order to improve the surface mechanical performance of Ti-6Al-4V alloy, in-situ TiC-TiB2 composite coating was deposited by tungsten inert gas (TIG) cladding process using Ti and B4C as precursor powder. Based on the available literature, SEM images of the blended precursor powder mixture and coating layer, electron probe micro analysis (EPMA) and corresponding XRD analysis of the produced coating, the formation mechanism of the present TiC-TiB2 composite coating during TIG cladding process was elucidated. The analysis shows that in the coating, TiB2 and TiB phases appeared as hexagonal or rectangular shape, whereas TiC as spherical shape within the matrix of unreacted Ti, Ti-6Al-4V alloy form the substrate and intermetallic phase like TiAl3 formed during the cladding process. The analysis also revealed that the TIG cladding processing current and scan speed have substantial effect on the coating morphology and the phases formed in the coating.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub></addata></record>
fulltext fulltext
identifier ISSN: 0257-8972
ispartof Surface & coatings technology, 2018-06, Vol.344, p.541
issn 0257-8972
1879-3347
language eng
recordid cdi_proquest_journals_2100878645
source Elsevier
subjects Analysis
Boron carbide
Chemical reactions
Cladding
Coating effects
Electron probes
Intermetallic phases
Matrix
Mechanical properties
Microstructure
Morphology
Precursors
Protective coatings
Rare gases
Substrates
Titanium base alloys
Titanium carbide
Titanium diboride
title In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20TiC-TiB%5Esub%202%5E%20coating%20on%20Ti-6Al-4V%20alloy%20by%20tungsten%20inert%20gas%20(TIG)%20cladding%20method:%20Part-I.%20Microstructure%20evolution&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Tijo,%20D&rft.date=2018-06-25&rft.volume=344&rft.spage=541&rft.pages=541-&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/&rft_dat=%3Cproquest%3E2100878645%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21008786453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2100878645&rft_id=info:pmid/&rfr_iscdi=true