Loading…
In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution
In order to improve the surface mechanical performance of Ti-6Al-4V alloy, in-situ TiC-TiB2 composite coating was deposited by tungsten inert gas (TIG) cladding process using Ti and B4C as precursor powder. Based on the available literature, SEM images of the blended precursor powder mixture and coa...
Saved in:
Published in: | Surface & coatings technology 2018-06, Vol.344, p.541 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | 541 |
container_title | Surface & coatings technology |
container_volume | 344 |
creator | Tijo, D Masanta, Manoj Das, Alok Kumar |
description | In order to improve the surface mechanical performance of Ti-6Al-4V alloy, in-situ TiC-TiB2 composite coating was deposited by tungsten inert gas (TIG) cladding process using Ti and B4C as precursor powder. Based on the available literature, SEM images of the blended precursor powder mixture and coating layer, electron probe micro analysis (EPMA) and corresponding XRD analysis of the produced coating, the formation mechanism of the present TiC-TiB2 composite coating during TIG cladding process was elucidated. The analysis shows that in the coating, TiB2 and TiB phases appeared as hexagonal or rectangular shape, whereas TiC as spherical shape within the matrix of unreacted Ti, Ti-6Al-4V alloy form the substrate and intermetallic phase like TiAl3 formed during the cladding process. The analysis also revealed that the TIG cladding processing current and scan speed have substantial effect on the coating morphology and the phases formed in the coating. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2100878645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2100878645</sourcerecordid><originalsourceid>FETCH-proquest_journals_21008786453</originalsourceid><addsrcrecordid>eNqNi7tOwzAUQC0EEgH6D1digcHIebRO2KCiNAMSQ8TYyk3c4Mr4gu81Uid-nSLxAZ3OcM45EVle60aWZaVPRaaKqZZ1o4tzcUG0U0rluqky8dMGSY4TdG4uO_e4orSBYgU9GnZhBAwHI2cPXlZvYLzHPWz2wCmMxDaACzYyjIbgpmufb6H3Zhj-vg_L7zjcw6uJLNs7eHF9ROKYek7Rgv1Gn9hhuBJnW-PJTv55Ka4XT918KT8jfiVLvN5hiuGg1kWuVK3rWTUtj6t-ASNBTwI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2100878645</pqid></control><display><type>article</type><title>In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution</title><source>Elsevier</source><creator>Tijo, D ; Masanta, Manoj ; Das, Alok Kumar</creator><creatorcontrib>Tijo, D ; Masanta, Manoj ; Das, Alok Kumar</creatorcontrib><description>In order to improve the surface mechanical performance of Ti-6Al-4V alloy, in-situ TiC-TiB2 composite coating was deposited by tungsten inert gas (TIG) cladding process using Ti and B4C as precursor powder. Based on the available literature, SEM images of the blended precursor powder mixture and coating layer, electron probe micro analysis (EPMA) and corresponding XRD analysis of the produced coating, the formation mechanism of the present TiC-TiB2 composite coating during TIG cladding process was elucidated. The analysis shows that in the coating, TiB2 and TiB phases appeared as hexagonal or rectangular shape, whereas TiC as spherical shape within the matrix of unreacted Ti, Ti-6Al-4V alloy form the substrate and intermetallic phase like TiAl3 formed during the cladding process. The analysis also revealed that the TIG cladding processing current and scan speed have substantial effect on the coating morphology and the phases formed in the coating.</description><identifier>ISSN: 0257-8972</identifier><identifier>EISSN: 1879-3347</identifier><language>eng</language><publisher>Lausanne: Elsevier BV</publisher><subject>Analysis ; Boron carbide ; Chemical reactions ; Cladding ; Coating effects ; Electron probes ; Intermetallic phases ; Matrix ; Mechanical properties ; Microstructure ; Morphology ; Precursors ; Protective coatings ; Rare gases ; Substrates ; Titanium base alloys ; Titanium carbide ; Titanium diboride</subject><ispartof>Surface & coatings technology, 2018-06, Vol.344, p.541</ispartof><rights>Copyright Elsevier BV Jun 25, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Tijo, D</creatorcontrib><creatorcontrib>Masanta, Manoj</creatorcontrib><creatorcontrib>Das, Alok Kumar</creatorcontrib><title>In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution</title><title>Surface & coatings technology</title><description>In order to improve the surface mechanical performance of Ti-6Al-4V alloy, in-situ TiC-TiB2 composite coating was deposited by tungsten inert gas (TIG) cladding process using Ti and B4C as precursor powder. Based on the available literature, SEM images of the blended precursor powder mixture and coating layer, electron probe micro analysis (EPMA) and corresponding XRD analysis of the produced coating, the formation mechanism of the present TiC-TiB2 composite coating during TIG cladding process was elucidated. The analysis shows that in the coating, TiB2 and TiB phases appeared as hexagonal or rectangular shape, whereas TiC as spherical shape within the matrix of unreacted Ti, Ti-6Al-4V alloy form the substrate and intermetallic phase like TiAl3 formed during the cladding process. The analysis also revealed that the TIG cladding processing current and scan speed have substantial effect on the coating morphology and the phases formed in the coating.</description><subject>Analysis</subject><subject>Boron carbide</subject><subject>Chemical reactions</subject><subject>Cladding</subject><subject>Coating effects</subject><subject>Electron probes</subject><subject>Intermetallic phases</subject><subject>Matrix</subject><subject>Mechanical properties</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Precursors</subject><subject>Protective coatings</subject><subject>Rare gases</subject><subject>Substrates</subject><subject>Titanium base alloys</subject><subject>Titanium carbide</subject><subject>Titanium diboride</subject><issn>0257-8972</issn><issn>1879-3347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqNi7tOwzAUQC0EEgH6D1digcHIebRO2KCiNAMSQ8TYyk3c4Mr4gu81Uid-nSLxAZ3OcM45EVle60aWZaVPRaaKqZZ1o4tzcUG0U0rluqky8dMGSY4TdG4uO_e4orSBYgU9GnZhBAwHI2cPXlZvYLzHPWz2wCmMxDaACzYyjIbgpmufb6H3Zhj-vg_L7zjcw6uJLNs7eHF9ROKYek7Rgv1Gn9hhuBJnW-PJTv55Ka4XT918KT8jfiVLvN5hiuGg1kWuVK3rWTUtj6t-ASNBTwI</recordid><startdate>20180625</startdate><enddate>20180625</enddate><creator>Tijo, D</creator><creator>Masanta, Manoj</creator><creator>Das, Alok Kumar</creator><general>Elsevier BV</general><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20180625</creationdate><title>In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution</title><author>Tijo, D ; Masanta, Manoj ; Das, Alok Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21008786453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Boron carbide</topic><topic>Chemical reactions</topic><topic>Cladding</topic><topic>Coating effects</topic><topic>Electron probes</topic><topic>Intermetallic phases</topic><topic>Matrix</topic><topic>Mechanical properties</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Precursors</topic><topic>Protective coatings</topic><topic>Rare gases</topic><topic>Substrates</topic><topic>Titanium base alloys</topic><topic>Titanium carbide</topic><topic>Titanium diboride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tijo, D</creatorcontrib><creatorcontrib>Masanta, Manoj</creatorcontrib><creatorcontrib>Das, Alok Kumar</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Surface & coatings technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tijo, D</au><au>Masanta, Manoj</au><au>Das, Alok Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution</atitle><jtitle>Surface & coatings technology</jtitle><date>2018-06-25</date><risdate>2018</risdate><volume>344</volume><spage>541</spage><pages>541-</pages><issn>0257-8972</issn><eissn>1879-3347</eissn><abstract>In order to improve the surface mechanical performance of Ti-6Al-4V alloy, in-situ TiC-TiB2 composite coating was deposited by tungsten inert gas (TIG) cladding process using Ti and B4C as precursor powder. Based on the available literature, SEM images of the blended precursor powder mixture and coating layer, electron probe micro analysis (EPMA) and corresponding XRD analysis of the produced coating, the formation mechanism of the present TiC-TiB2 composite coating during TIG cladding process was elucidated. The analysis shows that in the coating, TiB2 and TiB phases appeared as hexagonal or rectangular shape, whereas TiC as spherical shape within the matrix of unreacted Ti, Ti-6Al-4V alloy form the substrate and intermetallic phase like TiAl3 formed during the cladding process. The analysis also revealed that the TIG cladding processing current and scan speed have substantial effect on the coating morphology and the phases formed in the coating.</abstract><cop>Lausanne</cop><pub>Elsevier BV</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0257-8972 |
ispartof | Surface & coatings technology, 2018-06, Vol.344, p.541 |
issn | 0257-8972 1879-3347 |
language | eng |
recordid | cdi_proquest_journals_2100878645 |
source | Elsevier |
subjects | Analysis Boron carbide Chemical reactions Cladding Coating effects Electron probes Intermetallic phases Matrix Mechanical properties Microstructure Morphology Precursors Protective coatings Rare gases Substrates Titanium base alloys Titanium carbide Titanium diboride |
title | In-situ TiC-TiB^sub 2^ coating on Ti-6Al-4V alloy by tungsten inert gas (TIG) cladding method: Part-I. Microstructure evolution |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A27%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In-situ%20TiC-TiB%5Esub%202%5E%20coating%20on%20Ti-6Al-4V%20alloy%20by%20tungsten%20inert%20gas%20(TIG)%20cladding%20method:%20Part-I.%20Microstructure%20evolution&rft.jtitle=Surface%20&%20coatings%20technology&rft.au=Tijo,%20D&rft.date=2018-06-25&rft.volume=344&rft.spage=541&rft.pages=541-&rft.issn=0257-8972&rft.eissn=1879-3347&rft_id=info:doi/&rft_dat=%3Cproquest%3E2100878645%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21008786453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2100878645&rft_id=info:pmid/&rfr_iscdi=true |