Loading…
Biodegradable plant nursery containers from leather industry wastes
Novel biodegradable polymeric materials based on protein hydrolysate (Pr.Hyd), derived from waste products of the leather industry, and poly(ethylene glycol) diglycidyl ether (PEG) or epoxidized soybean oil (ESO) are obtained and their physico‐chemical properties and mechanical behaviour are evaluat...
Saved in:
Published in: | Polymer composites 2018-08, Vol.39 (8), p.2743-2750 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel biodegradable polymeric materials based on protein hydrolysate (Pr.Hyd), derived from waste products of the leather industry, and poly(ethylene glycol) diglycidyl ether (PEG) or epoxidized soybean oil (ESO) are obtained and their physico‐chemical properties and mechanical behaviour are evaluated. Different processing conditions and the introduction of fillers of natural origin, as saw dust and wood flour, are used to tailor the mechanical properties and the environmental durability of the product. The biodegradable products, which are almost completely manufactured from renewable‐based raw materials, look promising for several applications, particularly in agriculture for the additional fertilizing action of Pr.Hyd. To this purpose, tests are carried out to prove the feasibility of novel biodegradable pots and containers by investigating their functionality, their physico‐chemical and mechanical behaviour in standard and controlled experimental field conditions, and to follow the assessment of their biodegradation process during plants cultivation in the soil. POLYM. COMPOS., 39:2743–2750, 2018. © 2016 Society of Plastics Engineers |
---|---|
ISSN: | 0272-8397 1548-0569 |
DOI: | 10.1002/pc.24265 |