Loading…
ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed?
Many atmospheric river detection tools (ARDTs) have now been developed. However, their relative performance is not well documented. This paper compares a diverse set of ARDTs by applying them to a single location where a unique 12-year-long time-series from an atmospheric river observatory at Bodega...
Saved in:
Published in: | Climate dynamics 2019-04, Vol.52 (7-8), p.4973-4994 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033 |
container_end_page | 4994 |
container_issue | 7-8 |
container_start_page | 4973 |
container_title | Climate dynamics |
container_volume | 52 |
creator | Ralph, F. Martin Wilson, Anna M. Shulgina, Tamara Kawzenuk, Brian Sellars, Scott Rutz, Jonathan J. Lamjiri, Maryam A. Barnes, Elizabeth A. Gershunov, Alexander Guan, Bin Nardi, Kyle M. Osborne, Tashiana Wick, Gary A. |
description | Many atmospheric river detection tools (ARDTs) have now been developed. However, their relative performance is not well documented. This paper compares a diverse set of ARDTs by applying them to a single location where a unique 12-year-long time-series from an atmospheric river observatory at Bodega Bay, California is available. The study quantifies the sensitivity of the diagnosed number, duration, and intensity of ARs at this location to the choice of ARDT, and to the choice of reanalysis data set. The ARDTs compared here represent a range of methods that vary in their use of different variables, fixed vs. percentile-based thresholds, geometric shape requirements, Eulerian vs. Lagrangian approaches, and reanalyses. The ARDTs were evaluated first using the datasets documented in their initial publication, which found an average annual count of 19 ± 7. Applying the ARDTs to the same reanalysis dataset yields an average annual count of 19 ± 4. Applying a single ARDT to three reanalyses of varying grid sizes (0.5°, 1.0°–2.5°) showed little sensitivity to the choice of reanalysis. While the annual average AR event count varied by about a factor of two (10–25 per year) depending on the ARDT, average AR duration and maximum intensity varied by less than ± 10%, i.e., 24 ± 2 h duration; 458 ± 44 kg m
− 1
s
− 1
maximum IVT. ARDTs that use a much higher threshold for integrated vapor transport were compared separately, and yielded just 1–2 ARs annually on average. Generally, ARDTs that include either more stringent geometric criteria or higher thresholds identified the fewest AR events. |
doi_str_mv | 10.1007/s00382-018-4427-5 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2101679930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580518929</galeid><sourcerecordid>A580518929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033</originalsourceid><addsrcrecordid>eNp1ktFqFDEUhoNYcG19AO8CguDF1CQzmcx4I8uidaGlstbrcDaT7KTMJGuSbd07H6I3vp5PYtYRdBEJJPDn-8_hHH6EnlNyTgkRryMhZcMKQpuiqpgo-CM0o1WZlaatHqMZaUtSCC74E_Q0xltCaFULNkMP89XN1fJjoSEMexwThISVH7cQbPQOe4MhjT5uex2swsHe6YA7nbRKNn8n74f4Bvf-Ho_g9v-yEfc2YedDyqLDCxis8cFZ-PHte8SrXYwWHF79KnsPKRt63b09QycGhqif_X5P0ef3724WH4rL64vlYn5ZqIqRlO81tJwaA1o1mhHVclF1lHDTlFqthRCGd6JqoOvqtqkVp8zQtTJ1y0ooSVmeohdT3W3wX3Y6Jnnrd8HllpJRQmvR5q1l6nyiNjBoaZ3xKYDKp9OjVd5pY7M-5w3htGlZmw2vjgyZSfpr2kAeVy4_rY7Zl3-xvYYh9dEPu8N64zFIJ1AFH2PQRm6DHSHsJSXyEAE5RUDmCMhDBCTPHjZ5YmbdRoc_8_3f9BPF9LYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101679930</pqid></control><display><type>article</type><title>ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed?</title><source>Springer Nature</source><creator>Ralph, F. Martin ; Wilson, Anna M. ; Shulgina, Tamara ; Kawzenuk, Brian ; Sellars, Scott ; Rutz, Jonathan J. ; Lamjiri, Maryam A. ; Barnes, Elizabeth A. ; Gershunov, Alexander ; Guan, Bin ; Nardi, Kyle M. ; Osborne, Tashiana ; Wick, Gary A.</creator><creatorcontrib>Ralph, F. Martin ; Wilson, Anna M. ; Shulgina, Tamara ; Kawzenuk, Brian ; Sellars, Scott ; Rutz, Jonathan J. ; Lamjiri, Maryam A. ; Barnes, Elizabeth A. ; Gershunov, Alexander ; Guan, Bin ; Nardi, Kyle M. ; Osborne, Tashiana ; Wick, Gary A.</creatorcontrib><description>Many atmospheric river detection tools (ARDTs) have now been developed. However, their relative performance is not well documented. This paper compares a diverse set of ARDTs by applying them to a single location where a unique 12-year-long time-series from an atmospheric river observatory at Bodega Bay, California is available. The study quantifies the sensitivity of the diagnosed number, duration, and intensity of ARs at this location to the choice of ARDT, and to the choice of reanalysis data set. The ARDTs compared here represent a range of methods that vary in their use of different variables, fixed vs. percentile-based thresholds, geometric shape requirements, Eulerian vs. Lagrangian approaches, and reanalyses. The ARDTs were evaluated first using the datasets documented in their initial publication, which found an average annual count of 19 ± 7. Applying the ARDTs to the same reanalysis dataset yields an average annual count of 19 ± 4. Applying a single ARDT to three reanalyses of varying grid sizes (0.5°, 1.0°–2.5°) showed little sensitivity to the choice of reanalysis. While the annual average AR event count varied by about a factor of two (10–25 per year) depending on the ARDT, average AR duration and maximum intensity varied by less than ± 10%, i.e., 24 ± 2 h duration; 458 ± 44 kg m
− 1
s
− 1
maximum IVT. ARDTs that use a much higher threshold for integrated vapor transport were compared separately, and yielded just 1–2 ARs annually on average. Generally, ARDTs that include either more stringent geometric criteria or higher thresholds identified the fewest AR events.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-018-4427-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agreements ; Analysis ; Atmospheric circulation ; Climatology ; Datasets ; Detection ; Drought ; Duration ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Laboratories ; Observatories ; Oceanography ; Precipitation ; Sensitivity ; Thresholds ; Water shortages ; Watersheds ; Weather forecasting</subject><ispartof>Climate dynamics, 2019-04, Vol.52 (7-8), p.4973-4994</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033</citedby><cites>FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ralph, F. Martin</creatorcontrib><creatorcontrib>Wilson, Anna M.</creatorcontrib><creatorcontrib>Shulgina, Tamara</creatorcontrib><creatorcontrib>Kawzenuk, Brian</creatorcontrib><creatorcontrib>Sellars, Scott</creatorcontrib><creatorcontrib>Rutz, Jonathan J.</creatorcontrib><creatorcontrib>Lamjiri, Maryam A.</creatorcontrib><creatorcontrib>Barnes, Elizabeth A.</creatorcontrib><creatorcontrib>Gershunov, Alexander</creatorcontrib><creatorcontrib>Guan, Bin</creatorcontrib><creatorcontrib>Nardi, Kyle M.</creatorcontrib><creatorcontrib>Osborne, Tashiana</creatorcontrib><creatorcontrib>Wick, Gary A.</creatorcontrib><title>ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed?</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Many atmospheric river detection tools (ARDTs) have now been developed. However, their relative performance is not well documented. This paper compares a diverse set of ARDTs by applying them to a single location where a unique 12-year-long time-series from an atmospheric river observatory at Bodega Bay, California is available. The study quantifies the sensitivity of the diagnosed number, duration, and intensity of ARs at this location to the choice of ARDT, and to the choice of reanalysis data set. The ARDTs compared here represent a range of methods that vary in their use of different variables, fixed vs. percentile-based thresholds, geometric shape requirements, Eulerian vs. Lagrangian approaches, and reanalyses. The ARDTs were evaluated first using the datasets documented in their initial publication, which found an average annual count of 19 ± 7. Applying the ARDTs to the same reanalysis dataset yields an average annual count of 19 ± 4. Applying a single ARDT to three reanalyses of varying grid sizes (0.5°, 1.0°–2.5°) showed little sensitivity to the choice of reanalysis. While the annual average AR event count varied by about a factor of two (10–25 per year) depending on the ARDT, average AR duration and maximum intensity varied by less than ± 10%, i.e., 24 ± 2 h duration; 458 ± 44 kg m
− 1
s
− 1
maximum IVT. ARDTs that use a much higher threshold for integrated vapor transport were compared separately, and yielded just 1–2 ARs annually on average. Generally, ARDTs that include either more stringent geometric criteria or higher thresholds identified the fewest AR events.</description><subject>Agreements</subject><subject>Analysis</subject><subject>Atmospheric circulation</subject><subject>Climatology</subject><subject>Datasets</subject><subject>Detection</subject><subject>Drought</subject><subject>Duration</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Laboratories</subject><subject>Observatories</subject><subject>Oceanography</subject><subject>Precipitation</subject><subject>Sensitivity</subject><subject>Thresholds</subject><subject>Water shortages</subject><subject>Watersheds</subject><subject>Weather forecasting</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1ktFqFDEUhoNYcG19AO8CguDF1CQzmcx4I8uidaGlstbrcDaT7KTMJGuSbd07H6I3vp5PYtYRdBEJJPDn-8_hHH6EnlNyTgkRryMhZcMKQpuiqpgo-CM0o1WZlaatHqMZaUtSCC74E_Q0xltCaFULNkMP89XN1fJjoSEMexwThISVH7cQbPQOe4MhjT5uex2swsHe6YA7nbRKNn8n74f4Bvf-Ho_g9v-yEfc2YedDyqLDCxis8cFZ-PHte8SrXYwWHF79KnsPKRt63b09QycGhqif_X5P0ef3724WH4rL64vlYn5ZqIqRlO81tJwaA1o1mhHVclF1lHDTlFqthRCGd6JqoOvqtqkVp8zQtTJ1y0ooSVmeohdT3W3wX3Y6Jnnrd8HllpJRQmvR5q1l6nyiNjBoaZ3xKYDKp9OjVd5pY7M-5w3htGlZmw2vjgyZSfpr2kAeVy4_rY7Zl3-xvYYh9dEPu8N64zFIJ1AFH2PQRm6DHSHsJSXyEAE5RUDmCMhDBCTPHjZ5YmbdRoc_8_3f9BPF9LYo</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ralph, F. Martin</creator><creator>Wilson, Anna M.</creator><creator>Shulgina, Tamara</creator><creator>Kawzenuk, Brian</creator><creator>Sellars, Scott</creator><creator>Rutz, Jonathan J.</creator><creator>Lamjiri, Maryam A.</creator><creator>Barnes, Elizabeth A.</creator><creator>Gershunov, Alexander</creator><creator>Guan, Bin</creator><creator>Nardi, Kyle M.</creator><creator>Osborne, Tashiana</creator><creator>Wick, Gary A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20190401</creationdate><title>ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed?</title><author>Ralph, F. Martin ; Wilson, Anna M. ; Shulgina, Tamara ; Kawzenuk, Brian ; Sellars, Scott ; Rutz, Jonathan J. ; Lamjiri, Maryam A. ; Barnes, Elizabeth A. ; Gershunov, Alexander ; Guan, Bin ; Nardi, Kyle M. ; Osborne, Tashiana ; Wick, Gary A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agreements</topic><topic>Analysis</topic><topic>Atmospheric circulation</topic><topic>Climatology</topic><topic>Datasets</topic><topic>Detection</topic><topic>Drought</topic><topic>Duration</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Laboratories</topic><topic>Observatories</topic><topic>Oceanography</topic><topic>Precipitation</topic><topic>Sensitivity</topic><topic>Thresholds</topic><topic>Water shortages</topic><topic>Watersheds</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ralph, F. Martin</creatorcontrib><creatorcontrib>Wilson, Anna M.</creatorcontrib><creatorcontrib>Shulgina, Tamara</creatorcontrib><creatorcontrib>Kawzenuk, Brian</creatorcontrib><creatorcontrib>Sellars, Scott</creatorcontrib><creatorcontrib>Rutz, Jonathan J.</creatorcontrib><creatorcontrib>Lamjiri, Maryam A.</creatorcontrib><creatorcontrib>Barnes, Elizabeth A.</creatorcontrib><creatorcontrib>Gershunov, Alexander</creatorcontrib><creatorcontrib>Guan, Bin</creatorcontrib><creatorcontrib>Nardi, Kyle M.</creatorcontrib><creatorcontrib>Osborne, Tashiana</creatorcontrib><creatorcontrib>Wick, Gary A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Agricultural & Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ralph, F. Martin</au><au>Wilson, Anna M.</au><au>Shulgina, Tamara</au><au>Kawzenuk, Brian</au><au>Sellars, Scott</au><au>Rutz, Jonathan J.</au><au>Lamjiri, Maryam A.</au><au>Barnes, Elizabeth A.</au><au>Gershunov, Alexander</au><au>Guan, Bin</au><au>Nardi, Kyle M.</au><au>Osborne, Tashiana</au><au>Wick, Gary A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed?</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>52</volume><issue>7-8</issue><spage>4973</spage><epage>4994</epage><pages>4973-4994</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Many atmospheric river detection tools (ARDTs) have now been developed. However, their relative performance is not well documented. This paper compares a diverse set of ARDTs by applying them to a single location where a unique 12-year-long time-series from an atmospheric river observatory at Bodega Bay, California is available. The study quantifies the sensitivity of the diagnosed number, duration, and intensity of ARs at this location to the choice of ARDT, and to the choice of reanalysis data set. The ARDTs compared here represent a range of methods that vary in their use of different variables, fixed vs. percentile-based thresholds, geometric shape requirements, Eulerian vs. Lagrangian approaches, and reanalyses. The ARDTs were evaluated first using the datasets documented in their initial publication, which found an average annual count of 19 ± 7. Applying the ARDTs to the same reanalysis dataset yields an average annual count of 19 ± 4. Applying a single ARDT to three reanalyses of varying grid sizes (0.5°, 1.0°–2.5°) showed little sensitivity to the choice of reanalysis. While the annual average AR event count varied by about a factor of two (10–25 per year) depending on the ARDT, average AR duration and maximum intensity varied by less than ± 10%, i.e., 24 ± 2 h duration; 458 ± 44 kg m
− 1
s
− 1
maximum IVT. ARDTs that use a much higher threshold for integrated vapor transport were compared separately, and yielded just 1–2 ARs annually on average. Generally, ARDTs that include either more stringent geometric criteria or higher thresholds identified the fewest AR events.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-018-4427-5</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2019-04, Vol.52 (7-8), p.4973-4994 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_journals_2101679930 |
source | Springer Nature |
subjects | Agreements Analysis Atmospheric circulation Climatology Datasets Detection Drought Duration Earth and Environmental Science Earth Sciences Geophysics/Geodesy Laboratories Observatories Oceanography Precipitation Sensitivity Thresholds Water shortages Watersheds Weather forecasting |
title | ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed? |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ARTMIP-early%20start%20comparison%20of%20atmospheric%20river%20detection%20tools:%20how%20many%20atmospheric%20rivers%20hit%20northern%20California%E2%80%99s%20Russian%20River%20watershed?&rft.jtitle=Climate%20dynamics&rft.au=Ralph,%20F.%20Martin&rft.date=2019-04-01&rft.volume=52&rft.issue=7-8&rft.spage=4973&rft.epage=4994&rft.pages=4973-4994&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-018-4427-5&rft_dat=%3Cgale_proqu%3EA580518929%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2101679930&rft_id=info:pmid/&rft_galeid=A580518929&rfr_iscdi=true |