Loading…

ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed?

Many atmospheric river detection tools (ARDTs) have now been developed. However, their relative performance is not well documented. This paper compares a diverse set of ARDTs by applying them to a single location where a unique 12-year-long time-series from an atmospheric river observatory at Bodega...

Full description

Saved in:
Bibliographic Details
Published in:Climate dynamics 2019-04, Vol.52 (7-8), p.4973-4994
Main Authors: Ralph, F. Martin, Wilson, Anna M., Shulgina, Tamara, Kawzenuk, Brian, Sellars, Scott, Rutz, Jonathan J., Lamjiri, Maryam A., Barnes, Elizabeth A., Gershunov, Alexander, Guan, Bin, Nardi, Kyle M., Osborne, Tashiana, Wick, Gary A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033
cites cdi_FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033
container_end_page 4994
container_issue 7-8
container_start_page 4973
container_title Climate dynamics
container_volume 52
creator Ralph, F. Martin
Wilson, Anna M.
Shulgina, Tamara
Kawzenuk, Brian
Sellars, Scott
Rutz, Jonathan J.
Lamjiri, Maryam A.
Barnes, Elizabeth A.
Gershunov, Alexander
Guan, Bin
Nardi, Kyle M.
Osborne, Tashiana
Wick, Gary A.
description Many atmospheric river detection tools (ARDTs) have now been developed. However, their relative performance is not well documented. This paper compares a diverse set of ARDTs by applying them to a single location where a unique 12-year-long time-series from an atmospheric river observatory at Bodega Bay, California is available. The study quantifies the sensitivity of the diagnosed number, duration, and intensity of ARs at this location to the choice of ARDT, and to the choice of reanalysis data set. The ARDTs compared here represent a range of methods that vary in their use of different variables, fixed vs. percentile-based thresholds, geometric shape requirements, Eulerian vs. Lagrangian approaches, and reanalyses. The ARDTs were evaluated first using the datasets documented in their initial publication, which found an average annual count of 19 ± 7. Applying the ARDTs to the same reanalysis dataset yields an average annual count of 19 ± 4. Applying a single ARDT to three reanalyses of varying grid sizes (0.5°, 1.0°–2.5°) showed little sensitivity to the choice of reanalysis. While the annual average AR event count varied by about a factor of two (10–25 per year) depending on the ARDT, average AR duration and maximum intensity varied by less than ± 10%, i.e., 24 ± 2 h duration; 458 ± 44 kg m − 1 s − 1 maximum IVT. ARDTs that use a much higher threshold for integrated vapor transport were compared separately, and yielded just 1–2 ARs annually on average. Generally, ARDTs that include either more stringent geometric criteria or higher thresholds identified the fewest AR events.
doi_str_mv 10.1007/s00382-018-4427-5
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2101679930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A580518929</galeid><sourcerecordid>A580518929</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033</originalsourceid><addsrcrecordid>eNp1ktFqFDEUhoNYcG19AO8CguDF1CQzmcx4I8uidaGlstbrcDaT7KTMJGuSbd07H6I3vp5PYtYRdBEJJPDn-8_hHH6EnlNyTgkRryMhZcMKQpuiqpgo-CM0o1WZlaatHqMZaUtSCC74E_Q0xltCaFULNkMP89XN1fJjoSEMexwThISVH7cQbPQOe4MhjT5uex2swsHe6YA7nbRKNn8n74f4Bvf-Ho_g9v-yEfc2YedDyqLDCxis8cFZ-PHte8SrXYwWHF79KnsPKRt63b09QycGhqif_X5P0ef3724WH4rL64vlYn5ZqIqRlO81tJwaA1o1mhHVclF1lHDTlFqthRCGd6JqoOvqtqkVp8zQtTJ1y0ooSVmeohdT3W3wX3Y6Jnnrd8HllpJRQmvR5q1l6nyiNjBoaZ3xKYDKp9OjVd5pY7M-5w3htGlZmw2vjgyZSfpr2kAeVy4_rY7Zl3-xvYYh9dEPu8N64zFIJ1AFH2PQRm6DHSHsJSXyEAE5RUDmCMhDBCTPHjZ5YmbdRoc_8_3f9BPF9LYo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2101679930</pqid></control><display><type>article</type><title>ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed?</title><source>Springer Nature</source><creator>Ralph, F. Martin ; Wilson, Anna M. ; Shulgina, Tamara ; Kawzenuk, Brian ; Sellars, Scott ; Rutz, Jonathan J. ; Lamjiri, Maryam A. ; Barnes, Elizabeth A. ; Gershunov, Alexander ; Guan, Bin ; Nardi, Kyle M. ; Osborne, Tashiana ; Wick, Gary A.</creator><creatorcontrib>Ralph, F. Martin ; Wilson, Anna M. ; Shulgina, Tamara ; Kawzenuk, Brian ; Sellars, Scott ; Rutz, Jonathan J. ; Lamjiri, Maryam A. ; Barnes, Elizabeth A. ; Gershunov, Alexander ; Guan, Bin ; Nardi, Kyle M. ; Osborne, Tashiana ; Wick, Gary A.</creatorcontrib><description>Many atmospheric river detection tools (ARDTs) have now been developed. However, their relative performance is not well documented. This paper compares a diverse set of ARDTs by applying them to a single location where a unique 12-year-long time-series from an atmospheric river observatory at Bodega Bay, California is available. The study quantifies the sensitivity of the diagnosed number, duration, and intensity of ARs at this location to the choice of ARDT, and to the choice of reanalysis data set. The ARDTs compared here represent a range of methods that vary in their use of different variables, fixed vs. percentile-based thresholds, geometric shape requirements, Eulerian vs. Lagrangian approaches, and reanalyses. The ARDTs were evaluated first using the datasets documented in their initial publication, which found an average annual count of 19 ± 7. Applying the ARDTs to the same reanalysis dataset yields an average annual count of 19 ± 4. Applying a single ARDT to three reanalyses of varying grid sizes (0.5°, 1.0°–2.5°) showed little sensitivity to the choice of reanalysis. While the annual average AR event count varied by about a factor of two (10–25 per year) depending on the ARDT, average AR duration and maximum intensity varied by less than ± 10%, i.e., 24 ± 2 h duration; 458 ± 44 kg m − 1 s − 1 maximum IVT. ARDTs that use a much higher threshold for integrated vapor transport were compared separately, and yielded just 1–2 ARs annually on average. Generally, ARDTs that include either more stringent geometric criteria or higher thresholds identified the fewest AR events.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-018-4427-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agreements ; Analysis ; Atmospheric circulation ; Climatology ; Datasets ; Detection ; Drought ; Duration ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Laboratories ; Observatories ; Oceanography ; Precipitation ; Sensitivity ; Thresholds ; Water shortages ; Watersheds ; Weather forecasting</subject><ispartof>Climate dynamics, 2019-04, Vol.52 (7-8), p.4973-4994</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>COPYRIGHT 2019 Springer</rights><rights>Climate Dynamics is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033</citedby><cites>FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Ralph, F. Martin</creatorcontrib><creatorcontrib>Wilson, Anna M.</creatorcontrib><creatorcontrib>Shulgina, Tamara</creatorcontrib><creatorcontrib>Kawzenuk, Brian</creatorcontrib><creatorcontrib>Sellars, Scott</creatorcontrib><creatorcontrib>Rutz, Jonathan J.</creatorcontrib><creatorcontrib>Lamjiri, Maryam A.</creatorcontrib><creatorcontrib>Barnes, Elizabeth A.</creatorcontrib><creatorcontrib>Gershunov, Alexander</creatorcontrib><creatorcontrib>Guan, Bin</creatorcontrib><creatorcontrib>Nardi, Kyle M.</creatorcontrib><creatorcontrib>Osborne, Tashiana</creatorcontrib><creatorcontrib>Wick, Gary A.</creatorcontrib><title>ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed?</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Many atmospheric river detection tools (ARDTs) have now been developed. However, their relative performance is not well documented. This paper compares a diverse set of ARDTs by applying them to a single location where a unique 12-year-long time-series from an atmospheric river observatory at Bodega Bay, California is available. The study quantifies the sensitivity of the diagnosed number, duration, and intensity of ARs at this location to the choice of ARDT, and to the choice of reanalysis data set. The ARDTs compared here represent a range of methods that vary in their use of different variables, fixed vs. percentile-based thresholds, geometric shape requirements, Eulerian vs. Lagrangian approaches, and reanalyses. The ARDTs were evaluated first using the datasets documented in their initial publication, which found an average annual count of 19 ± 7. Applying the ARDTs to the same reanalysis dataset yields an average annual count of 19 ± 4. Applying a single ARDT to three reanalyses of varying grid sizes (0.5°, 1.0°–2.5°) showed little sensitivity to the choice of reanalysis. While the annual average AR event count varied by about a factor of two (10–25 per year) depending on the ARDT, average AR duration and maximum intensity varied by less than ± 10%, i.e., 24 ± 2 h duration; 458 ± 44 kg m − 1 s − 1 maximum IVT. ARDTs that use a much higher threshold for integrated vapor transport were compared separately, and yielded just 1–2 ARs annually on average. Generally, ARDTs that include either more stringent geometric criteria or higher thresholds identified the fewest AR events.</description><subject>Agreements</subject><subject>Analysis</subject><subject>Atmospheric circulation</subject><subject>Climatology</subject><subject>Datasets</subject><subject>Detection</subject><subject>Drought</subject><subject>Duration</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Laboratories</subject><subject>Observatories</subject><subject>Oceanography</subject><subject>Precipitation</subject><subject>Sensitivity</subject><subject>Thresholds</subject><subject>Water shortages</subject><subject>Watersheds</subject><subject>Weather forecasting</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1ktFqFDEUhoNYcG19AO8CguDF1CQzmcx4I8uidaGlstbrcDaT7KTMJGuSbd07H6I3vp5PYtYRdBEJJPDn-8_hHH6EnlNyTgkRryMhZcMKQpuiqpgo-CM0o1WZlaatHqMZaUtSCC74E_Q0xltCaFULNkMP89XN1fJjoSEMexwThISVH7cQbPQOe4MhjT5uex2swsHe6YA7nbRKNn8n74f4Bvf-Ho_g9v-yEfc2YedDyqLDCxis8cFZ-PHte8SrXYwWHF79KnsPKRt63b09QycGhqif_X5P0ef3724WH4rL64vlYn5ZqIqRlO81tJwaA1o1mhHVclF1lHDTlFqthRCGd6JqoOvqtqkVp8zQtTJ1y0ooSVmeohdT3W3wX3Y6Jnnrd8HllpJRQmvR5q1l6nyiNjBoaZ3xKYDKp9OjVd5pY7M-5w3htGlZmw2vjgyZSfpr2kAeVy4_rY7Zl3-xvYYh9dEPu8N64zFIJ1AFH2PQRm6DHSHsJSXyEAE5RUDmCMhDBCTPHjZ5YmbdRoc_8_3f9BPF9LYo</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Ralph, F. Martin</creator><creator>Wilson, Anna M.</creator><creator>Shulgina, Tamara</creator><creator>Kawzenuk, Brian</creator><creator>Sellars, Scott</creator><creator>Rutz, Jonathan J.</creator><creator>Lamjiri, Maryam A.</creator><creator>Barnes, Elizabeth A.</creator><creator>Gershunov, Alexander</creator><creator>Guan, Bin</creator><creator>Nardi, Kyle M.</creator><creator>Osborne, Tashiana</creator><creator>Wick, Gary A.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20190401</creationdate><title>ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed?</title><author>Ralph, F. Martin ; Wilson, Anna M. ; Shulgina, Tamara ; Kawzenuk, Brian ; Sellars, Scott ; Rutz, Jonathan J. ; Lamjiri, Maryam A. ; Barnes, Elizabeth A. ; Gershunov, Alexander ; Guan, Bin ; Nardi, Kyle M. ; Osborne, Tashiana ; Wick, Gary A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agreements</topic><topic>Analysis</topic><topic>Atmospheric circulation</topic><topic>Climatology</topic><topic>Datasets</topic><topic>Detection</topic><topic>Drought</topic><topic>Duration</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Laboratories</topic><topic>Observatories</topic><topic>Oceanography</topic><topic>Precipitation</topic><topic>Sensitivity</topic><topic>Thresholds</topic><topic>Water shortages</topic><topic>Watersheds</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ralph, F. Martin</creatorcontrib><creatorcontrib>Wilson, Anna M.</creatorcontrib><creatorcontrib>Shulgina, Tamara</creatorcontrib><creatorcontrib>Kawzenuk, Brian</creatorcontrib><creatorcontrib>Sellars, Scott</creatorcontrib><creatorcontrib>Rutz, Jonathan J.</creatorcontrib><creatorcontrib>Lamjiri, Maryam A.</creatorcontrib><creatorcontrib>Barnes, Elizabeth A.</creatorcontrib><creatorcontrib>Gershunov, Alexander</creatorcontrib><creatorcontrib>Guan, Bin</creatorcontrib><creatorcontrib>Nardi, Kyle M.</creatorcontrib><creatorcontrib>Osborne, Tashiana</creatorcontrib><creatorcontrib>Wick, Gary A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Agricultural &amp; Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ralph, F. Martin</au><au>Wilson, Anna M.</au><au>Shulgina, Tamara</au><au>Kawzenuk, Brian</au><au>Sellars, Scott</au><au>Rutz, Jonathan J.</au><au>Lamjiri, Maryam A.</au><au>Barnes, Elizabeth A.</au><au>Gershunov, Alexander</au><au>Guan, Bin</au><au>Nardi, Kyle M.</au><au>Osborne, Tashiana</au><au>Wick, Gary A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed?</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>52</volume><issue>7-8</issue><spage>4973</spage><epage>4994</epage><pages>4973-4994</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><abstract>Many atmospheric river detection tools (ARDTs) have now been developed. However, their relative performance is not well documented. This paper compares a diverse set of ARDTs by applying them to a single location where a unique 12-year-long time-series from an atmospheric river observatory at Bodega Bay, California is available. The study quantifies the sensitivity of the diagnosed number, duration, and intensity of ARs at this location to the choice of ARDT, and to the choice of reanalysis data set. The ARDTs compared here represent a range of methods that vary in their use of different variables, fixed vs. percentile-based thresholds, geometric shape requirements, Eulerian vs. Lagrangian approaches, and reanalyses. The ARDTs were evaluated first using the datasets documented in their initial publication, which found an average annual count of 19 ± 7. Applying the ARDTs to the same reanalysis dataset yields an average annual count of 19 ± 4. Applying a single ARDT to three reanalyses of varying grid sizes (0.5°, 1.0°–2.5°) showed little sensitivity to the choice of reanalysis. While the annual average AR event count varied by about a factor of two (10–25 per year) depending on the ARDT, average AR duration and maximum intensity varied by less than ± 10%, i.e., 24 ± 2 h duration; 458 ± 44 kg m − 1 s − 1 maximum IVT. ARDTs that use a much higher threshold for integrated vapor transport were compared separately, and yielded just 1–2 ARs annually on average. Generally, ARDTs that include either more stringent geometric criteria or higher thresholds identified the fewest AR events.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-018-4427-5</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7575
ispartof Climate dynamics, 2019-04, Vol.52 (7-8), p.4973-4994
issn 0930-7575
1432-0894
language eng
recordid cdi_proquest_journals_2101679930
source Springer Nature
subjects Agreements
Analysis
Atmospheric circulation
Climatology
Datasets
Detection
Drought
Duration
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Laboratories
Observatories
Oceanography
Precipitation
Sensitivity
Thresholds
Water shortages
Watersheds
Weather forecasting
title ARTMIP-early start comparison of atmospheric river detection tools: how many atmospheric rivers hit northern California’s Russian River watershed?
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A03%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ARTMIP-early%20start%20comparison%20of%20atmospheric%20river%20detection%20tools:%20how%20many%20atmospheric%20rivers%20hit%20northern%20California%E2%80%99s%20Russian%20River%20watershed?&rft.jtitle=Climate%20dynamics&rft.au=Ralph,%20F.%20Martin&rft.date=2019-04-01&rft.volume=52&rft.issue=7-8&rft.spage=4973&rft.epage=4994&rft.pages=4973-4994&rft.issn=0930-7575&rft.eissn=1432-0894&rft_id=info:doi/10.1007/s00382-018-4427-5&rft_dat=%3Cgale_proqu%3EA580518929%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-c4ba951ffaec8e20c9574d105f83ecb777f5d748add6986c512f1bcf6923a3033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2101679930&rft_id=info:pmid/&rft_galeid=A580518929&rfr_iscdi=true