Loading…

Numerical Simulation of Ripple Evolution under Turbulent Flow Using a Coupled LES and DPM Model

AbstractThe processes of ripple evolution are studied through numerical simulation using a coupled computational fluid dynamics (CFD)–discrete particle method (DPM) model with focus on discussing the effect of the size of the computational domain on ripple evolution. Ripple-induced form resistance a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydraulic engineering (New York, N.Y.) N.Y.), 2018-11, Vol.144 (11)
Main Authors: Zhang, Bangwen, Li, Shaowu, Ji, Chunning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a337t-9c917a4e7e2a2bb85cda00e7ed4fb55b04579bb9b1386e172810f6638d283f523
cites cdi_FETCH-LOGICAL-a337t-9c917a4e7e2a2bb85cda00e7ed4fb55b04579bb9b1386e172810f6638d283f523
container_end_page
container_issue 11
container_start_page
container_title Journal of hydraulic engineering (New York, N.Y.)
container_volume 144
creator Zhang, Bangwen
Li, Shaowu
Ji, Chunning
description AbstractThe processes of ripple evolution are studied through numerical simulation using a coupled computational fluid dynamics (CFD)–discrete particle method (DPM) model with focus on discussing the effect of the size of the computational domain on ripple evolution. Ripple-induced form resistance and bed load transport rate are also discussed. Fluid movement is simulated using the CFD computation with the introduction of large eddy simulation for turbulent closure. The movement of sediment particles is simulated using the DPM. It is found from the results of simulation that for a two-dimensional case the ripple evolution involves three stages from wavelet, merging of wavelets to equilibrium. The ripple sizes increase during the merging process and reach a stable state at the end of the merging process. The ripple sizes obtained in the final equilibrium stage are closely related to the streamwise size of the computational domain and have an upper bound for given sediment and flow conditions. If the streamwise size of the computational domain is set to approximately 6 times the ripple length or beyond, the discrepancies among the equilibrium ripple lengths obtained from using different streamwise size of computational domain can be below 9.2%. The ripple lengths modeled in the wavelet stage agree well with the experimental results. During the process of ripple merging, an abrupt reduction in the form resistance and an increase in the bed load transport rate are observed.
doi_str_mv 10.1061/(ASCE)HY.1943-7900.0001525
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2102182965</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2102182965</sourcerecordid><originalsourceid>FETCH-LOGICAL-a337t-9c917a4e7e2a2bb85cda00e7ed4fb55b04579bb9b1386e172810f6638d283f523</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwDxZsYJHiR15mV5WUIrWAaLvoyrITB6Vy42DHIP6ehPJYsRrN6Nw70gHgHKMRRjG-vhwvJ9nVbDPCLKRBwhAaIYRwRKIDMPi9HYIBSigNWEjYMThxbtsxYczSAeAPfqdslQsNl9XOa9FWpoamhM9V02gFszej_dfN14WycOWt9FrVLZxq8w7XrqpfoIAT4zu6gPNsCUVdwNunBVyYQulTcFQK7dTZ9xyC9TRbTWbB_PHufjKeB4LSpA1YznAiQpUoIoiUaZQXAqFuLcJSRpFEYZQwKZnENI0VTkiKURnHNC1ISsuI0CG42Pc21rx65Vq-Nd7W3UtOMCI4JSyOOupmT-XWOGdVyRtb7YT94BjxXijnvVA-2_BeHu_l8W-hXTjeh4XL1V_9T_L_4Cfq0Hkk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102182965</pqid></control><display><type>article</type><title>Numerical Simulation of Ripple Evolution under Turbulent Flow Using a Coupled LES and DPM Model</title><source>ASCE library</source><creator>Zhang, Bangwen ; Li, Shaowu ; Ji, Chunning</creator><creatorcontrib>Zhang, Bangwen ; Li, Shaowu ; Ji, Chunning</creatorcontrib><description>AbstractThe processes of ripple evolution are studied through numerical simulation using a coupled computational fluid dynamics (CFD)–discrete particle method (DPM) model with focus on discussing the effect of the size of the computational domain on ripple evolution. Ripple-induced form resistance and bed load transport rate are also discussed. Fluid movement is simulated using the CFD computation with the introduction of large eddy simulation for turbulent closure. The movement of sediment particles is simulated using the DPM. It is found from the results of simulation that for a two-dimensional case the ripple evolution involves three stages from wavelet, merging of wavelets to equilibrium. The ripple sizes increase during the merging process and reach a stable state at the end of the merging process. The ripple sizes obtained in the final equilibrium stage are closely related to the streamwise size of the computational domain and have an upper bound for given sediment and flow conditions. If the streamwise size of the computational domain is set to approximately 6 times the ripple length or beyond, the discrepancies among the equilibrium ripple lengths obtained from using different streamwise size of computational domain can be below 9.2%. The ripple lengths modeled in the wavelet stage agree well with the experimental results. During the process of ripple merging, an abrupt reduction in the form resistance and an increase in the bed load transport rate are observed.</description><identifier>ISSN: 0733-9429</identifier><identifier>EISSN: 1943-7900</identifier><identifier>DOI: 10.1061/(ASCE)HY.1943-7900.0001525</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Bed load ; Computation ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Dynamics ; Equilibrium ; Evolution ; Fluid dynamics ; Fluid flow ; Hydrodynamics ; Large eddy simulation ; Load distribution ; Load resistance ; Mathematical models ; Sediment ; Sediment transport ; Sediments ; Simulation ; Technical Papers ; Transport ; Transport rate ; Turbulent flow ; Upper bounds ; Wavelet analysis</subject><ispartof>Journal of hydraulic engineering (New York, N.Y.), 2018-11, Vol.144 (11)</ispartof><rights>2018 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a337t-9c917a4e7e2a2bb85cda00e7ed4fb55b04579bb9b1386e172810f6638d283f523</citedby><cites>FETCH-LOGICAL-a337t-9c917a4e7e2a2bb85cda00e7ed4fb55b04579bb9b1386e172810f6638d283f523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)HY.1943-7900.0001525$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)HY.1943-7900.0001525$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,780,784,3252,10068,27924,27925,76191,76199</link.rule.ids></links><search><creatorcontrib>Zhang, Bangwen</creatorcontrib><creatorcontrib>Li, Shaowu</creatorcontrib><creatorcontrib>Ji, Chunning</creatorcontrib><title>Numerical Simulation of Ripple Evolution under Turbulent Flow Using a Coupled LES and DPM Model</title><title>Journal of hydraulic engineering (New York, N.Y.)</title><description>AbstractThe processes of ripple evolution are studied through numerical simulation using a coupled computational fluid dynamics (CFD)–discrete particle method (DPM) model with focus on discussing the effect of the size of the computational domain on ripple evolution. Ripple-induced form resistance and bed load transport rate are also discussed. Fluid movement is simulated using the CFD computation with the introduction of large eddy simulation for turbulent closure. The movement of sediment particles is simulated using the DPM. It is found from the results of simulation that for a two-dimensional case the ripple evolution involves three stages from wavelet, merging of wavelets to equilibrium. The ripple sizes increase during the merging process and reach a stable state at the end of the merging process. The ripple sizes obtained in the final equilibrium stage are closely related to the streamwise size of the computational domain and have an upper bound for given sediment and flow conditions. If the streamwise size of the computational domain is set to approximately 6 times the ripple length or beyond, the discrepancies among the equilibrium ripple lengths obtained from using different streamwise size of computational domain can be below 9.2%. The ripple lengths modeled in the wavelet stage agree well with the experimental results. During the process of ripple merging, an abrupt reduction in the form resistance and an increase in the bed load transport rate are observed.</description><subject>Bed load</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Dynamics</subject><subject>Equilibrium</subject><subject>Evolution</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Large eddy simulation</subject><subject>Load distribution</subject><subject>Load resistance</subject><subject>Mathematical models</subject><subject>Sediment</subject><subject>Sediment transport</subject><subject>Sediments</subject><subject>Simulation</subject><subject>Technical Papers</subject><subject>Transport</subject><subject>Transport rate</subject><subject>Turbulent flow</subject><subject>Upper bounds</subject><subject>Wavelet analysis</subject><issn>0733-9429</issn><issn>1943-7900</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwDxZsYJHiR15mV5WUIrWAaLvoyrITB6Vy42DHIP6ehPJYsRrN6Nw70gHgHKMRRjG-vhwvJ9nVbDPCLKRBwhAaIYRwRKIDMPi9HYIBSigNWEjYMThxbtsxYczSAeAPfqdslQsNl9XOa9FWpoamhM9V02gFszej_dfN14WycOWt9FrVLZxq8w7XrqpfoIAT4zu6gPNsCUVdwNunBVyYQulTcFQK7dTZ9xyC9TRbTWbB_PHufjKeB4LSpA1YznAiQpUoIoiUaZQXAqFuLcJSRpFEYZQwKZnENI0VTkiKURnHNC1ISsuI0CG42Pc21rx65Vq-Nd7W3UtOMCI4JSyOOupmT-XWOGdVyRtb7YT94BjxXijnvVA-2_BeHu_l8W-hXTjeh4XL1V_9T_L_4Cfq0Hkk</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Zhang, Bangwen</creator><creator>Li, Shaowu</creator><creator>Ji, Chunning</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope></search><sort><creationdate>20181101</creationdate><title>Numerical Simulation of Ripple Evolution under Turbulent Flow Using a Coupled LES and DPM Model</title><author>Zhang, Bangwen ; Li, Shaowu ; Ji, Chunning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a337t-9c917a4e7e2a2bb85cda00e7ed4fb55b04579bb9b1386e172810f6638d283f523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bed load</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Dynamics</topic><topic>Equilibrium</topic><topic>Evolution</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Large eddy simulation</topic><topic>Load distribution</topic><topic>Load resistance</topic><topic>Mathematical models</topic><topic>Sediment</topic><topic>Sediment transport</topic><topic>Sediments</topic><topic>Simulation</topic><topic>Technical Papers</topic><topic>Transport</topic><topic>Transport rate</topic><topic>Turbulent flow</topic><topic>Upper bounds</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Bangwen</creatorcontrib><creatorcontrib>Li, Shaowu</creatorcontrib><creatorcontrib>Ji, Chunning</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Bangwen</au><au>Li, Shaowu</au><au>Ji, Chunning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Ripple Evolution under Turbulent Flow Using a Coupled LES and DPM Model</atitle><jtitle>Journal of hydraulic engineering (New York, N.Y.)</jtitle><date>2018-11-01</date><risdate>2018</risdate><volume>144</volume><issue>11</issue><issn>0733-9429</issn><eissn>1943-7900</eissn><abstract>AbstractThe processes of ripple evolution are studied through numerical simulation using a coupled computational fluid dynamics (CFD)–discrete particle method (DPM) model with focus on discussing the effect of the size of the computational domain on ripple evolution. Ripple-induced form resistance and bed load transport rate are also discussed. Fluid movement is simulated using the CFD computation with the introduction of large eddy simulation for turbulent closure. The movement of sediment particles is simulated using the DPM. It is found from the results of simulation that for a two-dimensional case the ripple evolution involves three stages from wavelet, merging of wavelets to equilibrium. The ripple sizes increase during the merging process and reach a stable state at the end of the merging process. The ripple sizes obtained in the final equilibrium stage are closely related to the streamwise size of the computational domain and have an upper bound for given sediment and flow conditions. If the streamwise size of the computational domain is set to approximately 6 times the ripple length or beyond, the discrepancies among the equilibrium ripple lengths obtained from using different streamwise size of computational domain can be below 9.2%. The ripple lengths modeled in the wavelet stage agree well with the experimental results. During the process of ripple merging, an abrupt reduction in the form resistance and an increase in the bed load transport rate are observed.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)HY.1943-7900.0001525</doi></addata></record>
fulltext fulltext
identifier ISSN: 0733-9429
ispartof Journal of hydraulic engineering (New York, N.Y.), 2018-11, Vol.144 (11)
issn 0733-9429
1943-7900
language eng
recordid cdi_proquest_journals_2102182965
source ASCE library
subjects Bed load
Computation
Computational fluid dynamics
Computer applications
Computer simulation
Dynamics
Equilibrium
Evolution
Fluid dynamics
Fluid flow
Hydrodynamics
Large eddy simulation
Load distribution
Load resistance
Mathematical models
Sediment
Sediment transport
Sediments
Simulation
Technical Papers
Transport
Transport rate
Turbulent flow
Upper bounds
Wavelet analysis
title Numerical Simulation of Ripple Evolution under Turbulent Flow Using a Coupled LES and DPM Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Ripple%20Evolution%20under%20Turbulent%20Flow%20Using%20a%20Coupled%20LES%20and%20DPM%20Model&rft.jtitle=Journal%20of%20hydraulic%20engineering%20(New%20York,%20N.Y.)&rft.au=Zhang,%20Bangwen&rft.date=2018-11-01&rft.volume=144&rft.issue=11&rft.issn=0733-9429&rft.eissn=1943-7900&rft_id=info:doi/10.1061/(ASCE)HY.1943-7900.0001525&rft_dat=%3Cproquest_cross%3E2102182965%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a337t-9c917a4e7e2a2bb85cda00e7ed4fb55b04579bb9b1386e172810f6638d283f523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2102182965&rft_id=info:pmid/&rfr_iscdi=true