Loading…
A two-phase sentiment analysis approach for judgement prediction
Factual scenario analysis of a judgement is critical to judges during sentencing. With the increasing number of legal cases, professionals typically endure heavy workloads on a daily basis. Although a few previous studies have applied information technology to legal cases, according to our research,...
Saved in:
Published in: | Journal of information science 2018-10, Vol.44 (5), p.594-607 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043 |
---|---|
cites | cdi_FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043 |
container_end_page | 607 |
container_issue | 5 |
container_start_page | 594 |
container_title | Journal of information science |
container_volume | 44 |
creator | Liu, Yi-Hung Chen, Yen-Liang |
description | Factual scenario analysis of a judgement is critical to judges during sentencing. With the increasing number of legal cases, professionals typically endure heavy workloads on a daily basis. Although a few previous studies have applied information technology to legal cases, according to our research, no prior studies have predicted a pending judgement using legal documents. In this article, we introduce an innovative solution to predict relevant rulings. The proposed approach employs text mining methods to extract features from precedents and applies a text classifier to automatically classify judgements according to sentiment analysis. This approach can assist legal experts or litigants in predicting possible judgements. Experimental results from a judgement data set reveal that our approach is a satisfactory method for judgement classification. |
doi_str_mv | 10.1177/0165551517722741 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2102661668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0165551517722741</sage_id><sourcerecordid>2102661668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043</originalsourceid><addsrcrecordid>eNp1UM9LwzAYDaJgnd49FjxHkzRJ25tj-AsGXnYPX9Jka9mamrTI_nszKwiCl-998H7weAjdUnJPaVk-ECqFEFSkn7GS0zOU0QRY8kqco-xE4xN_ia5i7Aghoi54hh6X-fjp8bCDaPNo-7E9pJNDD_tjbGMOwxA8mF3ufMi7qdnab34ItmnN2Pr-Gl042Ed784MLtHl-2qxe8fr95W21XGNTyHLEzmkqdF2Vta55zbVOfXgFhhHLGsJ4I5wGU2kQRDMnqQCQLFWvjHGc8GKB7ubYVOdjsnFUnZ9CahkVo4RJSaWskorMKhN8jME6NYT2AOGoKFGnmdTfmZIFz5YIW_sb-q_-C6TKZsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102661668</pqid></control><display><type>article</type><title>A two-phase sentiment analysis approach for judgement prediction</title><source>Library & Information Science Abstracts (LISA)</source><source>SAGE</source><creator>Liu, Yi-Hung ; Chen, Yen-Liang</creator><creatorcontrib>Liu, Yi-Hung ; Chen, Yen-Liang</creatorcontrib><description>Factual scenario analysis of a judgement is critical to judges during sentencing. With the increasing number of legal cases, professionals typically endure heavy workloads on a daily basis. Although a few previous studies have applied information technology to legal cases, according to our research, no prior studies have predicted a pending judgement using legal documents. In this article, we introduce an innovative solution to predict relevant rulings. The proposed approach employs text mining methods to extract features from precedents and applies a text classifier to automatically classify judgements according to sentiment analysis. This approach can assist legal experts or litigants in predicting possible judgements. Experimental results from a judgement data set reveal that our approach is a satisfactory method for judgement classification.</description><identifier>ISSN: 0165-5515</identifier><identifier>EISSN: 1741-6485</identifier><identifier>DOI: 10.1177/0165551517722741</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Classification ; Court decisions ; Data mining ; Feature extraction ; Information technology ; Litigation ; Predictions ; Sentiment analysis</subject><ispartof>Journal of information science, 2018-10, Vol.44 (5), p.594-607</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043</citedby><cites>FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135,79364</link.rule.ids></links><search><creatorcontrib>Liu, Yi-Hung</creatorcontrib><creatorcontrib>Chen, Yen-Liang</creatorcontrib><title>A two-phase sentiment analysis approach for judgement prediction</title><title>Journal of information science</title><description>Factual scenario analysis of a judgement is critical to judges during sentencing. With the increasing number of legal cases, professionals typically endure heavy workloads on a daily basis. Although a few previous studies have applied information technology to legal cases, according to our research, no prior studies have predicted a pending judgement using legal documents. In this article, we introduce an innovative solution to predict relevant rulings. The proposed approach employs text mining methods to extract features from precedents and applies a text classifier to automatically classify judgements according to sentiment analysis. This approach can assist legal experts or litigants in predicting possible judgements. Experimental results from a judgement data set reveal that our approach is a satisfactory method for judgement classification.</description><subject>Classification</subject><subject>Court decisions</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Information technology</subject><subject>Litigation</subject><subject>Predictions</subject><subject>Sentiment analysis</subject><issn>0165-5515</issn><issn>1741-6485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp1UM9LwzAYDaJgnd49FjxHkzRJ25tj-AsGXnYPX9Jka9mamrTI_nszKwiCl-998H7weAjdUnJPaVk-ECqFEFSkn7GS0zOU0QRY8kqco-xE4xN_ia5i7Aghoi54hh6X-fjp8bCDaPNo-7E9pJNDD_tjbGMOwxA8mF3ufMi7qdnab34ItmnN2Pr-Gl042Ed784MLtHl-2qxe8fr95W21XGNTyHLEzmkqdF2Vta55zbVOfXgFhhHLGsJ4I5wGU2kQRDMnqQCQLFWvjHGc8GKB7ubYVOdjsnFUnZ9CahkVo4RJSaWskorMKhN8jME6NYT2AOGoKFGnmdTfmZIFz5YIW_sb-q_-C6TKZsQ</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Liu, Yi-Hung</creator><creator>Chen, Yen-Liang</creator><general>SAGE Publications</general><general>Bowker-Saur Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20181001</creationdate><title>A two-phase sentiment analysis approach for judgement prediction</title><author>Liu, Yi-Hung ; Chen, Yen-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification</topic><topic>Court decisions</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Information technology</topic><topic>Litigation</topic><topic>Predictions</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yi-Hung</creatorcontrib><creatorcontrib>Chen, Yen-Liang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yi-Hung</au><au>Chen, Yen-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-phase sentiment analysis approach for judgement prediction</atitle><jtitle>Journal of information science</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>44</volume><issue>5</issue><spage>594</spage><epage>607</epage><pages>594-607</pages><issn>0165-5515</issn><eissn>1741-6485</eissn><abstract>Factual scenario analysis of a judgement is critical to judges during sentencing. With the increasing number of legal cases, professionals typically endure heavy workloads on a daily basis. Although a few previous studies have applied information technology to legal cases, according to our research, no prior studies have predicted a pending judgement using legal documents. In this article, we introduce an innovative solution to predict relevant rulings. The proposed approach employs text mining methods to extract features from precedents and applies a text classifier to automatically classify judgements according to sentiment analysis. This approach can assist legal experts or litigants in predicting possible judgements. Experimental results from a judgement data set reveal that our approach is a satisfactory method for judgement classification.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0165551517722741</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-5515 |
ispartof | Journal of information science, 2018-10, Vol.44 (5), p.594-607 |
issn | 0165-5515 1741-6485 |
language | eng |
recordid | cdi_proquest_journals_2102661668 |
source | Library & Information Science Abstracts (LISA); SAGE |
subjects | Classification Court decisions Data mining Feature extraction Information technology Litigation Predictions Sentiment analysis |
title | A two-phase sentiment analysis approach for judgement prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-phase%20sentiment%20analysis%20approach%20for%20judgement%20prediction&rft.jtitle=Journal%20of%20information%20science&rft.au=Liu,%20Yi-Hung&rft.date=2018-10-01&rft.volume=44&rft.issue=5&rft.spage=594&rft.epage=607&rft.pages=594-607&rft.issn=0165-5515&rft.eissn=1741-6485&rft_id=info:doi/10.1177/0165551517722741&rft_dat=%3Cproquest_cross%3E2102661668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2102661668&rft_id=info:pmid/&rft_sage_id=10.1177_0165551517722741&rfr_iscdi=true |