Loading…

A two-phase sentiment analysis approach for judgement prediction

Factual scenario analysis of a judgement is critical to judges during sentencing. With the increasing number of legal cases, professionals typically endure heavy workloads on a daily basis. Although a few previous studies have applied information technology to legal cases, according to our research,...

Full description

Saved in:
Bibliographic Details
Published in:Journal of information science 2018-10, Vol.44 (5), p.594-607
Main Authors: Liu, Yi-Hung, Chen, Yen-Liang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043
cites cdi_FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043
container_end_page 607
container_issue 5
container_start_page 594
container_title Journal of information science
container_volume 44
creator Liu, Yi-Hung
Chen, Yen-Liang
description Factual scenario analysis of a judgement is critical to judges during sentencing. With the increasing number of legal cases, professionals typically endure heavy workloads on a daily basis. Although a few previous studies have applied information technology to legal cases, according to our research, no prior studies have predicted a pending judgement using legal documents. In this article, we introduce an innovative solution to predict relevant rulings. The proposed approach employs text mining methods to extract features from precedents and applies a text classifier to automatically classify judgements according to sentiment analysis. This approach can assist legal experts or litigants in predicting possible judgements. Experimental results from a judgement data set reveal that our approach is a satisfactory method for judgement classification.
doi_str_mv 10.1177/0165551517722741
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2102661668</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0165551517722741</sage_id><sourcerecordid>2102661668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043</originalsourceid><addsrcrecordid>eNp1UM9LwzAYDaJgnd49FjxHkzRJ25tj-AsGXnYPX9Jka9mamrTI_nszKwiCl-998H7weAjdUnJPaVk-ECqFEFSkn7GS0zOU0QRY8kqco-xE4xN_ia5i7Aghoi54hh6X-fjp8bCDaPNo-7E9pJNDD_tjbGMOwxA8mF3ufMi7qdnab34ItmnN2Pr-Gl042Ed784MLtHl-2qxe8fr95W21XGNTyHLEzmkqdF2Vta55zbVOfXgFhhHLGsJ4I5wGU2kQRDMnqQCQLFWvjHGc8GKB7ubYVOdjsnFUnZ9CahkVo4RJSaWskorMKhN8jME6NYT2AOGoKFGnmdTfmZIFz5YIW_sb-q_-C6TKZsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2102661668</pqid></control><display><type>article</type><title>A two-phase sentiment analysis approach for judgement prediction</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>SAGE</source><creator>Liu, Yi-Hung ; Chen, Yen-Liang</creator><creatorcontrib>Liu, Yi-Hung ; Chen, Yen-Liang</creatorcontrib><description>Factual scenario analysis of a judgement is critical to judges during sentencing. With the increasing number of legal cases, professionals typically endure heavy workloads on a daily basis. Although a few previous studies have applied information technology to legal cases, according to our research, no prior studies have predicted a pending judgement using legal documents. In this article, we introduce an innovative solution to predict relevant rulings. The proposed approach employs text mining methods to extract features from precedents and applies a text classifier to automatically classify judgements according to sentiment analysis. This approach can assist legal experts or litigants in predicting possible judgements. Experimental results from a judgement data set reveal that our approach is a satisfactory method for judgement classification.</description><identifier>ISSN: 0165-5515</identifier><identifier>EISSN: 1741-6485</identifier><identifier>DOI: 10.1177/0165551517722741</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Classification ; Court decisions ; Data mining ; Feature extraction ; Information technology ; Litigation ; Predictions ; Sentiment analysis</subject><ispartof>Journal of information science, 2018-10, Vol.44 (5), p.594-607</ispartof><rights>The Author(s) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043</citedby><cites>FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,34135,79364</link.rule.ids></links><search><creatorcontrib>Liu, Yi-Hung</creatorcontrib><creatorcontrib>Chen, Yen-Liang</creatorcontrib><title>A two-phase sentiment analysis approach for judgement prediction</title><title>Journal of information science</title><description>Factual scenario analysis of a judgement is critical to judges during sentencing. With the increasing number of legal cases, professionals typically endure heavy workloads on a daily basis. Although a few previous studies have applied information technology to legal cases, according to our research, no prior studies have predicted a pending judgement using legal documents. In this article, we introduce an innovative solution to predict relevant rulings. The proposed approach employs text mining methods to extract features from precedents and applies a text classifier to automatically classify judgements according to sentiment analysis. This approach can assist legal experts or litigants in predicting possible judgements. Experimental results from a judgement data set reveal that our approach is a satisfactory method for judgement classification.</description><subject>Classification</subject><subject>Court decisions</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>Information technology</subject><subject>Litigation</subject><subject>Predictions</subject><subject>Sentiment analysis</subject><issn>0165-5515</issn><issn>1741-6485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp1UM9LwzAYDaJgnd49FjxHkzRJ25tj-AsGXnYPX9Jka9mamrTI_nszKwiCl-998H7weAjdUnJPaVk-ECqFEFSkn7GS0zOU0QRY8kqco-xE4xN_ia5i7Aghoi54hh6X-fjp8bCDaPNo-7E9pJNDD_tjbGMOwxA8mF3ufMi7qdnab34ItmnN2Pr-Gl042Ed784MLtHl-2qxe8fr95W21XGNTyHLEzmkqdF2Vta55zbVOfXgFhhHLGsJ4I5wGU2kQRDMnqQCQLFWvjHGc8GKB7ubYVOdjsnFUnZ9CahkVo4RJSaWskorMKhN8jME6NYT2AOGoKFGnmdTfmZIFz5YIW_sb-q_-C6TKZsQ</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Liu, Yi-Hung</creator><creator>Chen, Yen-Liang</creator><general>SAGE Publications</general><general>Bowker-Saur Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20181001</creationdate><title>A two-phase sentiment analysis approach for judgement prediction</title><author>Liu, Yi-Hung ; Chen, Yen-Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classification</topic><topic>Court decisions</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>Information technology</topic><topic>Litigation</topic><topic>Predictions</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yi-Hung</creatorcontrib><creatorcontrib>Chen, Yen-Liang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yi-Hung</au><au>Chen, Yen-Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A two-phase sentiment analysis approach for judgement prediction</atitle><jtitle>Journal of information science</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>44</volume><issue>5</issue><spage>594</spage><epage>607</epage><pages>594-607</pages><issn>0165-5515</issn><eissn>1741-6485</eissn><abstract>Factual scenario analysis of a judgement is critical to judges during sentencing. With the increasing number of legal cases, professionals typically endure heavy workloads on a daily basis. Although a few previous studies have applied information technology to legal cases, according to our research, no prior studies have predicted a pending judgement using legal documents. In this article, we introduce an innovative solution to predict relevant rulings. The proposed approach employs text mining methods to extract features from precedents and applies a text classifier to automatically classify judgements according to sentiment analysis. This approach can assist legal experts or litigants in predicting possible judgements. Experimental results from a judgement data set reveal that our approach is a satisfactory method for judgement classification.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0165551517722741</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-5515
ispartof Journal of information science, 2018-10, Vol.44 (5), p.594-607
issn 0165-5515
1741-6485
language eng
recordid cdi_proquest_journals_2102661668
source Library & Information Science Abstracts (LISA); SAGE
subjects Classification
Court decisions
Data mining
Feature extraction
Information technology
Litigation
Predictions
Sentiment analysis
title A two-phase sentiment analysis approach for judgement prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20two-phase%20sentiment%20analysis%20approach%20for%20judgement%20prediction&rft.jtitle=Journal%20of%20information%20science&rft.au=Liu,%20Yi-Hung&rft.date=2018-10-01&rft.volume=44&rft.issue=5&rft.spage=594&rft.epage=607&rft.pages=594-607&rft.issn=0165-5515&rft.eissn=1741-6485&rft_id=info:doi/10.1177/0165551517722741&rft_dat=%3Cproquest_cross%3E2102661668%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c367t-ffb15b9879b9494bb16548ac20e2d024d5fbac8ba50b2f615aa624858ccf4043%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2102661668&rft_id=info:pmid/&rft_sage_id=10.1177_0165551517722741&rfr_iscdi=true