Loading…
HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements
The dominant multipath components for massive multiple-input multiple-output systems can be described using geometry-based channel models with R -dimensional ( R -D) parameters. These parameters are crucial for channel correlation acquisition, which is a prerequisite for many technical challenges. I...
Saved in:
Published in: | Multidimensional systems and signal processing 2018-10, Vol.29 (4), p.1255-1267 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383 |
container_end_page | 1267 |
container_issue | 4 |
container_start_page | 1255 |
container_title | Multidimensional systems and signal processing |
container_volume | 29 |
creator | Wen, Fuxi Xu, Yangyang |
description | The dominant multipath components for massive multiple-input multiple-output systems can be described using geometry-based channel models with
R
-dimensional (
R
-D) parameters. These parameters are crucial for channel correlation acquisition, which is a prerequisite for many technical challenges. In this paper, we consider higher-order singular value decomposition based
R
-D channel modeling parameter estimation from incomplete measurements. Incomplete higher-order orthogonality iteration algorithm can be utilized to solve the problem, which simultaneously achieves tensor recovery and tensor decomposition. After obtaining the signal or noise subspace, the parameters of interest can be estimated by using subspace methods. |
doi_str_mv | 10.1007/s11045-017-0501-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2103030727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103030727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZTZNNjlI_WmjpwY_rsklmNSWbxJ1E6L93SwRPModhhvd5mXkZuxZwKwDUHQkBiyQCoSJIQERwwmYiUXEEmVycshnkMo7SMJyzC6I9QKBEOmPtavfy_sALQ1hxNzZDXdUOW6q71jS8N944HNBzpKF2ZghrbjvPnSGqv5Fv19sdpwMN6Lj1neN1W3aubwLDy0_Ttthwh4ZGj8F1oEt2Zk1DePXb5-zt6fF1uYo2u-f18n4TlbFIh0gasGUpVVplYoHWVpjLLLMJYKLAikRmealEmuSJSm1eKAQoqsLIzEJc2TiL5-xm8u199zWG4_W-G314ibQUEIdSUgWVmFSl74g8Wt378KU_aAH6GKueYtUhVn2MVUNg5MRQ0LYf6P-c_4d-AL1pe-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103030727</pqid></control><display><type>article</type><title>HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements</title><source>Springer Nature</source><creator>Wen, Fuxi ; Xu, Yangyang</creator><creatorcontrib>Wen, Fuxi ; Xu, Yangyang</creatorcontrib><description>The dominant multipath components for massive multiple-input multiple-output systems can be described using geometry-based channel models with
R
-dimensional (
R
-D) parameters. These parameters are crucial for channel correlation acquisition, which is a prerequisite for many technical challenges. In this paper, we consider higher-order singular value decomposition based
R
-D channel modeling parameter estimation from incomplete measurements. Incomplete higher-order orthogonality iteration algorithm can be utilized to solve the problem, which simultaneously achieves tensor recovery and tensor decomposition. After obtaining the signal or noise subspace, the parameters of interest can be estimated by using subspace methods.</description><identifier>ISSN: 0923-6082</identifier><identifier>EISSN: 1573-0824</identifier><identifier>DOI: 10.1007/s11045-017-0501-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Circuits and Systems ; Electrical Engineering ; Engineering ; Iterative algorithms ; Iterative methods ; Mathematical models ; MIMO (control systems) ; Orthogonality ; Parameter estimation ; Signal,Image and Speech Processing ; Singular value decomposition ; Subspace methods</subject><ispartof>Multidimensional systems and signal processing, 2018-10, Vol.29 (4), p.1255-1267</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383</citedby><cites>FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383</cites><orcidid>0000-0003-3686-1446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wen, Fuxi</creatorcontrib><creatorcontrib>Xu, Yangyang</creatorcontrib><title>HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements</title><title>Multidimensional systems and signal processing</title><addtitle>Multidim Syst Sign Process</addtitle><description>The dominant multipath components for massive multiple-input multiple-output systems can be described using geometry-based channel models with
R
-dimensional (
R
-D) parameters. These parameters are crucial for channel correlation acquisition, which is a prerequisite for many technical challenges. In this paper, we consider higher-order singular value decomposition based
R
-D channel modeling parameter estimation from incomplete measurements. Incomplete higher-order orthogonality iteration algorithm can be utilized to solve the problem, which simultaneously achieves tensor recovery and tensor decomposition. After obtaining the signal or noise subspace, the parameters of interest can be estimated by using subspace methods.</description><subject>Artificial Intelligence</subject><subject>Circuits and Systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>MIMO (control systems)</subject><subject>Orthogonality</subject><subject>Parameter estimation</subject><subject>Signal,Image and Speech Processing</subject><subject>Singular value decomposition</subject><subject>Subspace methods</subject><issn>0923-6082</issn><issn>1573-0824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZTZNNjlI_WmjpwY_rsklmNSWbxJ1E6L93SwRPModhhvd5mXkZuxZwKwDUHQkBiyQCoSJIQERwwmYiUXEEmVycshnkMo7SMJyzC6I9QKBEOmPtavfy_sALQ1hxNzZDXdUOW6q71jS8N944HNBzpKF2ZghrbjvPnSGqv5Fv19sdpwMN6Lj1neN1W3aubwLDy0_Ttthwh4ZGj8F1oEt2Zk1DePXb5-zt6fF1uYo2u-f18n4TlbFIh0gasGUpVVplYoHWVpjLLLMJYKLAikRmealEmuSJSm1eKAQoqsLIzEJc2TiL5-xm8u199zWG4_W-G314ibQUEIdSUgWVmFSl74g8Wt378KU_aAH6GKueYtUhVn2MVUNg5MRQ0LYf6P-c_4d-AL1pe-A</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Wen, Fuxi</creator><creator>Xu, Yangyang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3686-1446</orcidid></search><sort><creationdate>20181001</creationdate><title>HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements</title><author>Wen, Fuxi ; Xu, Yangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Circuits and Systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>MIMO (control systems)</topic><topic>Orthogonality</topic><topic>Parameter estimation</topic><topic>Signal,Image and Speech Processing</topic><topic>Singular value decomposition</topic><topic>Subspace methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Fuxi</creatorcontrib><creatorcontrib>Xu, Yangyang</creatorcontrib><collection>CrossRef</collection><jtitle>Multidimensional systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Fuxi</au><au>Xu, Yangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements</atitle><jtitle>Multidimensional systems and signal processing</jtitle><stitle>Multidim Syst Sign Process</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>29</volume><issue>4</issue><spage>1255</spage><epage>1267</epage><pages>1255-1267</pages><issn>0923-6082</issn><eissn>1573-0824</eissn><abstract>The dominant multipath components for massive multiple-input multiple-output systems can be described using geometry-based channel models with
R
-dimensional (
R
-D) parameters. These parameters are crucial for channel correlation acquisition, which is a prerequisite for many technical challenges. In this paper, we consider higher-order singular value decomposition based
R
-D channel modeling parameter estimation from incomplete measurements. Incomplete higher-order orthogonality iteration algorithm can be utilized to solve the problem, which simultaneously achieves tensor recovery and tensor decomposition. After obtaining the signal or noise subspace, the parameters of interest can be estimated by using subspace methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11045-017-0501-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3686-1446</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-6082 |
ispartof | Multidimensional systems and signal processing, 2018-10, Vol.29 (4), p.1255-1267 |
issn | 0923-6082 1573-0824 |
language | eng |
recordid | cdi_proquest_journals_2103030727 |
source | Springer Nature |
subjects | Artificial Intelligence Circuits and Systems Electrical Engineering Engineering Iterative algorithms Iterative methods Mathematical models MIMO (control systems) Orthogonality Parameter estimation Signal,Image and Speech Processing Singular value decomposition Subspace methods |
title | HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HOSVD%20based%20multidimensional%20parameter%20estimation%20for%20massive%20MIMO%20system%20from%20incomplete%20channel%20measurements&rft.jtitle=Multidimensional%20systems%20and%20signal%20processing&rft.au=Wen,%20Fuxi&rft.date=2018-10-01&rft.volume=29&rft.issue=4&rft.spage=1255&rft.epage=1267&rft.pages=1255-1267&rft.issn=0923-6082&rft.eissn=1573-0824&rft_id=info:doi/10.1007/s11045-017-0501-0&rft_dat=%3Cproquest_cross%3E2103030727%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2103030727&rft_id=info:pmid/&rfr_iscdi=true |