Loading…

HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements

The dominant multipath components for massive multiple-input multiple-output systems can be described using geometry-based channel models with R -dimensional ( R -D) parameters. These parameters are crucial for channel correlation acquisition, which is a prerequisite for many technical challenges. I...

Full description

Saved in:
Bibliographic Details
Published in:Multidimensional systems and signal processing 2018-10, Vol.29 (4), p.1255-1267
Main Authors: Wen, Fuxi, Xu, Yangyang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383
cites cdi_FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383
container_end_page 1267
container_issue 4
container_start_page 1255
container_title Multidimensional systems and signal processing
container_volume 29
creator Wen, Fuxi
Xu, Yangyang
description The dominant multipath components for massive multiple-input multiple-output systems can be described using geometry-based channel models with R -dimensional ( R -D) parameters. These parameters are crucial for channel correlation acquisition, which is a prerequisite for many technical challenges. In this paper, we consider higher-order singular value decomposition based R -D channel modeling parameter estimation from incomplete measurements. Incomplete higher-order orthogonality iteration algorithm can be utilized to solve the problem, which simultaneously achieves tensor recovery and tensor decomposition. After obtaining the signal or noise subspace, the parameters of interest can be estimated by using subspace methods.
doi_str_mv 10.1007/s11045-017-0501-0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2103030727</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2103030727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZTZNNjlI_WmjpwY_rsklmNSWbxJ1E6L93SwRPModhhvd5mXkZuxZwKwDUHQkBiyQCoSJIQERwwmYiUXEEmVycshnkMo7SMJyzC6I9QKBEOmPtavfy_sALQ1hxNzZDXdUOW6q71jS8N944HNBzpKF2ZghrbjvPnSGqv5Fv19sdpwMN6Lj1neN1W3aubwLDy0_Ttthwh4ZGj8F1oEt2Zk1DePXb5-zt6fF1uYo2u-f18n4TlbFIh0gasGUpVVplYoHWVpjLLLMJYKLAikRmealEmuSJSm1eKAQoqsLIzEJc2TiL5-xm8u199zWG4_W-G314ibQUEIdSUgWVmFSl74g8Wt378KU_aAH6GKueYtUhVn2MVUNg5MRQ0LYf6P-c_4d-AL1pe-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2103030727</pqid></control><display><type>article</type><title>HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements</title><source>Springer Nature</source><creator>Wen, Fuxi ; Xu, Yangyang</creator><creatorcontrib>Wen, Fuxi ; Xu, Yangyang</creatorcontrib><description>The dominant multipath components for massive multiple-input multiple-output systems can be described using geometry-based channel models with R -dimensional ( R -D) parameters. These parameters are crucial for channel correlation acquisition, which is a prerequisite for many technical challenges. In this paper, we consider higher-order singular value decomposition based R -D channel modeling parameter estimation from incomplete measurements. Incomplete higher-order orthogonality iteration algorithm can be utilized to solve the problem, which simultaneously achieves tensor recovery and tensor decomposition. After obtaining the signal or noise subspace, the parameters of interest can be estimated by using subspace methods.</description><identifier>ISSN: 0923-6082</identifier><identifier>EISSN: 1573-0824</identifier><identifier>DOI: 10.1007/s11045-017-0501-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Artificial Intelligence ; Circuits and Systems ; Electrical Engineering ; Engineering ; Iterative algorithms ; Iterative methods ; Mathematical models ; MIMO (control systems) ; Orthogonality ; Parameter estimation ; Signal,Image and Speech Processing ; Singular value decomposition ; Subspace methods</subject><ispartof>Multidimensional systems and signal processing, 2018-10, Vol.29 (4), p.1255-1267</ispartof><rights>Springer Science+Business Media New York 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383</citedby><cites>FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383</cites><orcidid>0000-0003-3686-1446</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wen, Fuxi</creatorcontrib><creatorcontrib>Xu, Yangyang</creatorcontrib><title>HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements</title><title>Multidimensional systems and signal processing</title><addtitle>Multidim Syst Sign Process</addtitle><description>The dominant multipath components for massive multiple-input multiple-output systems can be described using geometry-based channel models with R -dimensional ( R -D) parameters. These parameters are crucial for channel correlation acquisition, which is a prerequisite for many technical challenges. In this paper, we consider higher-order singular value decomposition based R -D channel modeling parameter estimation from incomplete measurements. Incomplete higher-order orthogonality iteration algorithm can be utilized to solve the problem, which simultaneously achieves tensor recovery and tensor decomposition. After obtaining the signal or noise subspace, the parameters of interest can be estimated by using subspace methods.</description><subject>Artificial Intelligence</subject><subject>Circuits and Systems</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>MIMO (control systems)</subject><subject>Orthogonality</subject><subject>Parameter estimation</subject><subject>Signal,Image and Speech Processing</subject><subject>Singular value decomposition</subject><subject>Subspace methods</subject><issn>0923-6082</issn><issn>1573-0824</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZTZNNjlI_WmjpwY_rsklmNSWbxJ1E6L93SwRPModhhvd5mXkZuxZwKwDUHQkBiyQCoSJIQERwwmYiUXEEmVycshnkMo7SMJyzC6I9QKBEOmPtavfy_sALQ1hxNzZDXdUOW6q71jS8N944HNBzpKF2ZghrbjvPnSGqv5Fv19sdpwMN6Lj1neN1W3aubwLDy0_Ttthwh4ZGj8F1oEt2Zk1DePXb5-zt6fF1uYo2u-f18n4TlbFIh0gasGUpVVplYoHWVpjLLLMJYKLAikRmealEmuSJSm1eKAQoqsLIzEJc2TiL5-xm8u199zWG4_W-G314ibQUEIdSUgWVmFSl74g8Wt378KU_aAH6GKueYtUhVn2MVUNg5MRQ0LYf6P-c_4d-AL1pe-A</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Wen, Fuxi</creator><creator>Xu, Yangyang</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3686-1446</orcidid></search><sort><creationdate>20181001</creationdate><title>HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements</title><author>Wen, Fuxi ; Xu, Yangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Intelligence</topic><topic>Circuits and Systems</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>MIMO (control systems)</topic><topic>Orthogonality</topic><topic>Parameter estimation</topic><topic>Signal,Image and Speech Processing</topic><topic>Singular value decomposition</topic><topic>Subspace methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Fuxi</creatorcontrib><creatorcontrib>Xu, Yangyang</creatorcontrib><collection>CrossRef</collection><jtitle>Multidimensional systems and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Fuxi</au><au>Xu, Yangyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements</atitle><jtitle>Multidimensional systems and signal processing</jtitle><stitle>Multidim Syst Sign Process</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>29</volume><issue>4</issue><spage>1255</spage><epage>1267</epage><pages>1255-1267</pages><issn>0923-6082</issn><eissn>1573-0824</eissn><abstract>The dominant multipath components for massive multiple-input multiple-output systems can be described using geometry-based channel models with R -dimensional ( R -D) parameters. These parameters are crucial for channel correlation acquisition, which is a prerequisite for many technical challenges. In this paper, we consider higher-order singular value decomposition based R -D channel modeling parameter estimation from incomplete measurements. Incomplete higher-order orthogonality iteration algorithm can be utilized to solve the problem, which simultaneously achieves tensor recovery and tensor decomposition. After obtaining the signal or noise subspace, the parameters of interest can be estimated by using subspace methods.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11045-017-0501-0</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3686-1446</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0923-6082
ispartof Multidimensional systems and signal processing, 2018-10, Vol.29 (4), p.1255-1267
issn 0923-6082
1573-0824
language eng
recordid cdi_proquest_journals_2103030727
source Springer Nature
subjects Artificial Intelligence
Circuits and Systems
Electrical Engineering
Engineering
Iterative algorithms
Iterative methods
Mathematical models
MIMO (control systems)
Orthogonality
Parameter estimation
Signal,Image and Speech Processing
Singular value decomposition
Subspace methods
title HOSVD based multidimensional parameter estimation for massive MIMO system from incomplete channel measurements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A26%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HOSVD%20based%20multidimensional%20parameter%20estimation%20for%20massive%20MIMO%20system%20from%20incomplete%20channel%20measurements&rft.jtitle=Multidimensional%20systems%20and%20signal%20processing&rft.au=Wen,%20Fuxi&rft.date=2018-10-01&rft.volume=29&rft.issue=4&rft.spage=1255&rft.epage=1267&rft.pages=1255-1267&rft.issn=0923-6082&rft.eissn=1573-0824&rft_id=info:doi/10.1007/s11045-017-0501-0&rft_dat=%3Cproquest_cross%3E2103030727%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-2a0fcc276d814effde9288f50e570f15289c71659576f9b7e00bdba28f03df383%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2103030727&rft_id=info:pmid/&rfr_iscdi=true