Loading…
Modified whale optimization algorithm for fractional‐order multi‐input SSSC‐based controller design
Summary In this paper, the design of a fractional‐order (FO) multi‐input–single‐output (MISO)–type static synchronous series compensator (SSSC) is proposed with a goal to improve the power system stability using modified whale optimization algorithm (MWOA). The proposed MWOA achieves an appropriate...
Saved in:
Published in: | Optimal control applications & methods 2018-09, Vol.39 (5), p.1802-1817 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
In this paper, the design of a fractional‐order (FO) multi‐input–single‐output (MISO)–type static synchronous series compensator (SSSC) is proposed with a goal to improve the power system stability using modified whale optimization algorithm (MWOA). The proposed MWOA achieves an appropriate balance between exploitation and exploration stages of the original whale optimization algorithm. The performance of MWOA is validated by employing the benchmark test functions and further contrasted with whale optimization algorithm and other heuristic algorithms like gravitational search algorithm, particle swarm optimization, differential evolution, and fast evolutionary programming algorithms to demonstrate its strength. The proposed FO MISO SSSC controller is optimized by the MWOA technique and tested under single‐machine infinite bus system and further extended to a multi‐machine framework. To demonstrate the superiority of MISO‐type SSSC controller, the results obtained from it are compared with particle swarm optimization and differential evolution–based conventional single‐input–single‐output structured SSSC controllers. The comparison of results of MWOA with that of other methods validates its superiority in the present context. |
---|---|
ISSN: | 0143-2087 1099-1514 |
DOI: | 10.1002/oca.2443 |