Loading…
IOT Based Augmented Perturb-and-Observe Soft Switching Boost Converters for Photovoltaic Power Systems in Smart Cities
This paper focuses on IOT based soft switching boost converter based solar energy applications for smart cities and making cities smarter and greener around the globe. It presents one of the applications of the Internet of Things to design and implementation of a highly efficient boost converter use...
Saved in:
Published in: | Wireless personal communications 2018-10, Vol.102 (4), p.2619-2641 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper focuses on IOT based soft switching boost converter based solar energy applications for smart cities and making cities smarter and greener around the globe. It presents one of the applications of the Internet of Things to design and implementation of a highly efficient boost converter used for powering the Arduino and the Bluetooth device for controlling the switching of the led and buzzer by using smart city applications. The soft switching boost converter is essential to maximize the low-level voltage obtained from the solar board to the enhanced voltage conversion ratio for the efficient electric power generation. In this paper, the three separate methodologies of DC–DC boost converters with additional resonant/snubber circuit and resistive load associated with solar panel modules proposed with maximum power point tracking (MPPT) control. The MPPT is obtained by modified augmented perturb and observe algorithm. IoT helps Smart City(SC) systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. It is utilized to extract the most extreme power from solar panel by controlling the duty ratio of the suggested soft switching based boost converter. In this paper a smart IOT system is used to control and monitoring the effect of reference power variations, parameter values to the voltage control to the converter. The solar panel, boost converter and the MPPT is modeled using MATLAB/SIMULINK environment and reach the power transfer efficiency up to 97%. |
---|---|
ISSN: | 0929-6212 1572-834X |
DOI: | 10.1007/s11277-018-5280-x |