Loading…
Improved estimation of Cetane number of fatty acid methyl esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models
[Display omitted] •Cetane number (CN) of biodiesel based on fatty acid methyl esters (FAMEs) composition is modeled.•PSO-ANN and TLBO-ANN are developed for modeling CN.•A number of 232 fuel samples derived from the literature was used for the models development.•Different evaluative factors prove sa...
Saved in:
Published in: | Fuel (Guildford) 2018-11, Vol.232, p.620-631 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c365t-bef7b34f2be74df15e27fba428a7d34bb533509d4c63afabd65228fe879c51f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c365t-bef7b34f2be74df15e27fba428a7d34bb533509d4c63afabd65228fe879c51f33 |
container_end_page | 631 |
container_issue | |
container_start_page | 620 |
container_title | Fuel (Guildford) |
container_volume | 232 |
creator | Baghban, Alireza Kardani, Mohammad Navid Mohammadi, Amir H. |
description | [Display omitted]
•Cetane number (CN) of biodiesel based on fatty acid methyl esters (FAMEs) composition is modeled.•PSO-ANN and TLBO-ANN are developed for modeling CN.•A number of 232 fuel samples derived from the literature was used for the models development.•Different evaluative factors prove satisfactory performances of the proposed ANN models.
Cetane number (CN) is one of the key factors of biodiesels and other diesel fuels. It is an indicator of ignition speed and required compression for ignition. CN estimation of biodiesel based on fatty acid methyl esters (FAME) composition was the main goal of this work. Application of artificial neural network (ANN) combined with particle swarm optimization (PSO) and teaching-learning based optimization (TLBO) is discussed in this communication. A number of 232 fuel samples was derived from the literature as the raw data for the models development. Different evaluative factors prove the satisfactory performance of the proposed ANN models. The obtained values of R-squared and mean square of errors are 0.973 & 3.538 and 0.951 & 6.324 for the proposed TLBO-ANN and PSO-ANN, respectively. Based on the outcome of this study, ANN coupled with PSO and TLBO algorithms can be suitable tools, especially TLBO algorithm to estimate CN of biodiesels. |
doi_str_mv | 10.1016/j.fuel.2018.05.166 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2104174394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016236118310111</els_id><sourcerecordid>2104174394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-bef7b34f2be74df15e27fba428a7d34bb533509d4c63afabd65228fe879c51f33</originalsourceid><addsrcrecordid>eNp9kE1P3DAQhi3USmwX_gAnS1zoIak_46zEha6WD2mBSsDZsuMxeLVJqJ0g5d_jsD33NKOZ952PB6EzSkpKaPVrV_oR9iUjtC6JLGlVHaEFrRUvFJX8G1qQrCoYr-gx-pHSjhCiaikWaLpr32P_AQ5DGkJrhtB3uPd4DYPpAHdjayHOBW-GYcKmCQ63MLxN-9kAMeGL66v7TfqJrUl5ig29C5Bgn_CYQveKn7e_H4uHB2w6h_88faVt73L_BH33Zp_g9F9copfrzfP6ttg-3tytr7ZFwys5FBa8slx4ZkEJ56kEprw1gtVGOS6slZxLsnKiqbjxxrpKMlZ7qNWqkdRzvkTnh7n5z79jPlrv-jF2eaVmlAiqBF-JrGIHVRP7lCJ4_R4zjjhpSvSMWO_0jFjPiDWROiPOpsuDKb8DHwGiTk2ArgEXIjSDdn34n_0TPLmExA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104174394</pqid></control><display><type>article</type><title>Improved estimation of Cetane number of fatty acid methyl esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models</title><source>ScienceDirect Freedom Collection</source><creator>Baghban, Alireza ; Kardani, Mohammad Navid ; Mohammadi, Amir H.</creator><creatorcontrib>Baghban, Alireza ; Kardani, Mohammad Navid ; Mohammadi, Amir H.</creatorcontrib><description>[Display omitted]
•Cetane number (CN) of biodiesel based on fatty acid methyl esters (FAMEs) composition is modeled.•PSO-ANN and TLBO-ANN are developed for modeling CN.•A number of 232 fuel samples derived from the literature was used for the models development.•Different evaluative factors prove satisfactory performances of the proposed ANN models.
Cetane number (CN) is one of the key factors of biodiesels and other diesel fuels. It is an indicator of ignition speed and required compression for ignition. CN estimation of biodiesel based on fatty acid methyl esters (FAME) composition was the main goal of this work. Application of artificial neural network (ANN) combined with particle swarm optimization (PSO) and teaching-learning based optimization (TLBO) is discussed in this communication. A number of 232 fuel samples was derived from the literature as the raw data for the models development. Different evaluative factors prove the satisfactory performance of the proposed ANN models. The obtained values of R-squared and mean square of errors are 0.973 & 3.538 and 0.951 & 6.324 for the proposed TLBO-ANN and PSO-ANN, respectively. Based on the outcome of this study, ANN coupled with PSO and TLBO algorithms can be suitable tools, especially TLBO algorithm to estimate CN of biodiesels.</description><identifier>ISSN: 0016-2361</identifier><identifier>EISSN: 1873-7153</identifier><identifier>DOI: 10.1016/j.fuel.2018.05.166</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Algorithms ; ANN algorithm ; Artificial neural networks ; Biodiesel ; Biodiesel fuels ; Cetane number ; Diesel fuels ; Esters ; Evolutionary algorithm ; FAME ; Fatty acids ; Genetic algorithms ; Ignition ; Learning theory ; Neural networks ; Particle swarm optimization</subject><ispartof>Fuel (Guildford), 2018-11, Vol.232, p.620-631</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Nov 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-bef7b34f2be74df15e27fba428a7d34bb533509d4c63afabd65228fe879c51f33</citedby><cites>FETCH-LOGICAL-c365t-bef7b34f2be74df15e27fba428a7d34bb533509d4c63afabd65228fe879c51f33</cites><orcidid>0000-0002-7224-4704</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Baghban, Alireza</creatorcontrib><creatorcontrib>Kardani, Mohammad Navid</creatorcontrib><creatorcontrib>Mohammadi, Amir H.</creatorcontrib><title>Improved estimation of Cetane number of fatty acid methyl esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models</title><title>Fuel (Guildford)</title><description>[Display omitted]
•Cetane number (CN) of biodiesel based on fatty acid methyl esters (FAMEs) composition is modeled.•PSO-ANN and TLBO-ANN are developed for modeling CN.•A number of 232 fuel samples derived from the literature was used for the models development.•Different evaluative factors prove satisfactory performances of the proposed ANN models.
Cetane number (CN) is one of the key factors of biodiesels and other diesel fuels. It is an indicator of ignition speed and required compression for ignition. CN estimation of biodiesel based on fatty acid methyl esters (FAME) composition was the main goal of this work. Application of artificial neural network (ANN) combined with particle swarm optimization (PSO) and teaching-learning based optimization (TLBO) is discussed in this communication. A number of 232 fuel samples was derived from the literature as the raw data for the models development. Different evaluative factors prove the satisfactory performance of the proposed ANN models. The obtained values of R-squared and mean square of errors are 0.973 & 3.538 and 0.951 & 6.324 for the proposed TLBO-ANN and PSO-ANN, respectively. Based on the outcome of this study, ANN coupled with PSO and TLBO algorithms can be suitable tools, especially TLBO algorithm to estimate CN of biodiesels.</description><subject>Algorithms</subject><subject>ANN algorithm</subject><subject>Artificial neural networks</subject><subject>Biodiesel</subject><subject>Biodiesel fuels</subject><subject>Cetane number</subject><subject>Diesel fuels</subject><subject>Esters</subject><subject>Evolutionary algorithm</subject><subject>FAME</subject><subject>Fatty acids</subject><subject>Genetic algorithms</subject><subject>Ignition</subject><subject>Learning theory</subject><subject>Neural networks</subject><subject>Particle swarm optimization</subject><issn>0016-2361</issn><issn>1873-7153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P3DAQhi3USmwX_gAnS1zoIak_46zEha6WD2mBSsDZsuMxeLVJqJ0g5d_jsD33NKOZ952PB6EzSkpKaPVrV_oR9iUjtC6JLGlVHaEFrRUvFJX8G1qQrCoYr-gx-pHSjhCiaikWaLpr32P_AQ5DGkJrhtB3uPd4DYPpAHdjayHOBW-GYcKmCQ63MLxN-9kAMeGL66v7TfqJrUl5ig29C5Bgn_CYQveKn7e_H4uHB2w6h_88faVt73L_BH33Zp_g9F9copfrzfP6ttg-3tytr7ZFwys5FBa8slx4ZkEJ56kEprw1gtVGOS6slZxLsnKiqbjxxrpKMlZ7qNWqkdRzvkTnh7n5z79jPlrv-jF2eaVmlAiqBF-JrGIHVRP7lCJ4_R4zjjhpSvSMWO_0jFjPiDWROiPOpsuDKb8DHwGiTk2ArgEXIjSDdn34n_0TPLmExA</recordid><startdate>20181115</startdate><enddate>20181115</enddate><creator>Baghban, Alireza</creator><creator>Kardani, Mohammad Navid</creator><creator>Mohammadi, Amir H.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-7224-4704</orcidid></search><sort><creationdate>20181115</creationdate><title>Improved estimation of Cetane number of fatty acid methyl esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models</title><author>Baghban, Alireza ; Kardani, Mohammad Navid ; Mohammadi, Amir H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-bef7b34f2be74df15e27fba428a7d34bb533509d4c63afabd65228fe879c51f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>ANN algorithm</topic><topic>Artificial neural networks</topic><topic>Biodiesel</topic><topic>Biodiesel fuels</topic><topic>Cetane number</topic><topic>Diesel fuels</topic><topic>Esters</topic><topic>Evolutionary algorithm</topic><topic>FAME</topic><topic>Fatty acids</topic><topic>Genetic algorithms</topic><topic>Ignition</topic><topic>Learning theory</topic><topic>Neural networks</topic><topic>Particle swarm optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baghban, Alireza</creatorcontrib><creatorcontrib>Kardani, Mohammad Navid</creatorcontrib><creatorcontrib>Mohammadi, Amir H.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Fuel (Guildford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baghban, Alireza</au><au>Kardani, Mohammad Navid</au><au>Mohammadi, Amir H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved estimation of Cetane number of fatty acid methyl esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models</atitle><jtitle>Fuel (Guildford)</jtitle><date>2018-11-15</date><risdate>2018</risdate><volume>232</volume><spage>620</spage><epage>631</epage><pages>620-631</pages><issn>0016-2361</issn><eissn>1873-7153</eissn><abstract>[Display omitted]
•Cetane number (CN) of biodiesel based on fatty acid methyl esters (FAMEs) composition is modeled.•PSO-ANN and TLBO-ANN are developed for modeling CN.•A number of 232 fuel samples derived from the literature was used for the models development.•Different evaluative factors prove satisfactory performances of the proposed ANN models.
Cetane number (CN) is one of the key factors of biodiesels and other diesel fuels. It is an indicator of ignition speed and required compression for ignition. CN estimation of biodiesel based on fatty acid methyl esters (FAME) composition was the main goal of this work. Application of artificial neural network (ANN) combined with particle swarm optimization (PSO) and teaching-learning based optimization (TLBO) is discussed in this communication. A number of 232 fuel samples was derived from the literature as the raw data for the models development. Different evaluative factors prove the satisfactory performance of the proposed ANN models. The obtained values of R-squared and mean square of errors are 0.973 & 3.538 and 0.951 & 6.324 for the proposed TLBO-ANN and PSO-ANN, respectively. Based on the outcome of this study, ANN coupled with PSO and TLBO algorithms can be suitable tools, especially TLBO algorithm to estimate CN of biodiesels.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.fuel.2018.05.166</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7224-4704</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-2361 |
ispartof | Fuel (Guildford), 2018-11, Vol.232, p.620-631 |
issn | 0016-2361 1873-7153 |
language | eng |
recordid | cdi_proquest_journals_2104174394 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms ANN algorithm Artificial neural networks Biodiesel Biodiesel fuels Cetane number Diesel fuels Esters Evolutionary algorithm FAME Fatty acids Genetic algorithms Ignition Learning theory Neural networks Particle swarm optimization |
title | Improved estimation of Cetane number of fatty acid methyl esters (FAMEs) based biodiesels using TLBO-NN and PSO-NN models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A14%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20estimation%20of%20Cetane%20number%20of%20fatty%20acid%20methyl%20esters%20(FAMEs)%20based%20biodiesels%20using%20TLBO-NN%20and%20PSO-NN%20models&rft.jtitle=Fuel%20(Guildford)&rft.au=Baghban,%20Alireza&rft.date=2018-11-15&rft.volume=232&rft.spage=620&rft.epage=631&rft.pages=620-631&rft.issn=0016-2361&rft.eissn=1873-7153&rft_id=info:doi/10.1016/j.fuel.2018.05.166&rft_dat=%3Cproquest_cross%3E2104174394%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c365t-bef7b34f2be74df15e27fba428a7d34bb533509d4c63afabd65228fe879c51f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2104174394&rft_id=info:pmid/&rfr_iscdi=true |