Loading…
Force-based atomistic/continuum blending for multilattices
We formulate the blended force-based quasicontinuum method for multilattices and develop rigorous error estimates in terms of the approximation parameters: choice of atomistic region, blending region, and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomi...
Saved in:
Published in: | Numerische Mathematik 2018-11, Vol.140 (3), p.703-754 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3 |
container_end_page | 754 |
container_issue | 3 |
container_start_page | 703 |
container_title | Numerische Mathematik |
container_volume | 140 |
creator | Olson, Derek Li, Xingjie Ortner, Christoph Van Koten, Brian |
description | We formulate the blended force-based quasicontinuum method for multilattices and develop rigorous error estimates in terms of the approximation parameters: choice of atomistic region, blending region, and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomistic/continuum multiscale method for multilattices with point defects, including a rigorous convergence rate in terms of the computational cost. The analysis is illustrated with numerical results for a Stone–Wales defect in graphene. |
doi_str_mv | 10.1007/s00211-018-0979-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2104203442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2104203442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcF13FevprGnQyOCgNuFNyFNEmHDm0zJi2M_94MFVy5endx7n1wELolcE8A5CoBUEIwkAqDkgofz9ACFBeYUS7OcwaqsFDq8xJdpbQHILLkZIEeNiFaj2uTvCvMGPo2ja1d2TCM7TBNfVF3fnDtsCuaEIt-6sa2M2NGfLpGF43pkr_5vUv0sXl6X7_g7dvz6_pxiy0TasQSGlV6URHuKGVSKtOUNkcuStsI4pyrGyME8ZVglTNAmGJGqYopJx0oy5bobt49xPA1-TTqfZjikF9qSoBTYJzTTJGZsjGkFH2jD7HtTfzWBPRJkZ4V6axInxTpY-7QuZMyO-x8_Fv-v_QDxD9pZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104203442</pqid></control><display><type>article</type><title>Force-based atomistic/continuum blending for multilattices</title><source>Springer Nature</source><creator>Olson, Derek ; Li, Xingjie ; Ortner, Christoph ; Van Koten, Brian</creator><creatorcontrib>Olson, Derek ; Li, Xingjie ; Ortner, Christoph ; Van Koten, Brian</creatorcontrib><description>We formulate the blended force-based quasicontinuum method for multilattices and develop rigorous error estimates in terms of the approximation parameters: choice of atomistic region, blending region, and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomistic/continuum multiscale method for multilattices with point defects, including a rigorous convergence rate in terms of the computational cost. The analysis is illustrated with numerical results for a Stone–Wales defect in graphene.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-018-0979-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2018-11, Vol.140 (3), p.703-754</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3</citedby><cites>FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Olson, Derek</creatorcontrib><creatorcontrib>Li, Xingjie</creatorcontrib><creatorcontrib>Ortner, Christoph</creatorcontrib><creatorcontrib>Van Koten, Brian</creatorcontrib><title>Force-based atomistic/continuum blending for multilattices</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We formulate the blended force-based quasicontinuum method for multilattices and develop rigorous error estimates in terms of the approximation parameters: choice of atomistic region, blending region, and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomistic/continuum multiscale method for multilattices with point defects, including a rigorous convergence rate in terms of the computational cost. The analysis is illustrated with numerical results for a Stone–Wales defect in graphene.</description><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcF13FevprGnQyOCgNuFNyFNEmHDm0zJi2M_94MFVy5endx7n1wELolcE8A5CoBUEIwkAqDkgofz9ACFBeYUS7OcwaqsFDq8xJdpbQHILLkZIEeNiFaj2uTvCvMGPo2ja1d2TCM7TBNfVF3fnDtsCuaEIt-6sa2M2NGfLpGF43pkr_5vUv0sXl6X7_g7dvz6_pxiy0TasQSGlV6URHuKGVSKtOUNkcuStsI4pyrGyME8ZVglTNAmGJGqYopJx0oy5bobt49xPA1-TTqfZjikF9qSoBTYJzTTJGZsjGkFH2jD7HtTfzWBPRJkZ4V6axInxTpY-7QuZMyO-x8_Fv-v_QDxD9pZQ</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Olson, Derek</creator><creator>Li, Xingjie</creator><creator>Ortner, Christoph</creator><creator>Van Koten, Brian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Force-based atomistic/continuum blending for multilattices</title><author>Olson, Derek ; Li, Xingjie ; Ortner, Christoph ; Van Koten, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olson, Derek</creatorcontrib><creatorcontrib>Li, Xingjie</creatorcontrib><creatorcontrib>Ortner, Christoph</creatorcontrib><creatorcontrib>Van Koten, Brian</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olson, Derek</au><au>Li, Xingjie</au><au>Ortner, Christoph</au><au>Van Koten, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Force-based atomistic/continuum blending for multilattices</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>140</volume><issue>3</issue><spage>703</spage><epage>754</epage><pages>703-754</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We formulate the blended force-based quasicontinuum method for multilattices and develop rigorous error estimates in terms of the approximation parameters: choice of atomistic region, blending region, and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomistic/continuum multiscale method for multilattices with point defects, including a rigorous convergence rate in terms of the computational cost. The analysis is illustrated with numerical results for a Stone–Wales defect in graphene.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-018-0979-x</doi><tpages>52</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2018-11, Vol.140 (3), p.703-754 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_proquest_journals_2104203442 |
source | Springer Nature |
subjects | Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Simulation Theoretical |
title | Force-based atomistic/continuum blending for multilattices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Force-based%20atomistic/continuum%20blending%20for%20multilattices&rft.jtitle=Numerische%20Mathematik&rft.au=Olson,%20Derek&rft.date=2018-11-01&rft.volume=140&rft.issue=3&rft.spage=703&rft.epage=754&rft.pages=703-754&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-018-0979-x&rft_dat=%3Cproquest_cross%3E2104203442%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2104203442&rft_id=info:pmid/&rfr_iscdi=true |