Loading…

Force-based atomistic/continuum blending for multilattices

We formulate the blended force-based quasicontinuum method for multilattices and develop rigorous error estimates in terms of the approximation parameters: choice of atomistic region, blending region, and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomi...

Full description

Saved in:
Bibliographic Details
Published in:Numerische Mathematik 2018-11, Vol.140 (3), p.703-754
Main Authors: Olson, Derek, Li, Xingjie, Ortner, Christoph, Van Koten, Brian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3
cites cdi_FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3
container_end_page 754
container_issue 3
container_start_page 703
container_title Numerische Mathematik
container_volume 140
creator Olson, Derek
Li, Xingjie
Ortner, Christoph
Van Koten, Brian
description We formulate the blended force-based quasicontinuum method for multilattices and develop rigorous error estimates in terms of the approximation parameters: choice of atomistic region, blending region, and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomistic/continuum multiscale method for multilattices with point defects, including a rigorous convergence rate in terms of the computational cost. The analysis is illustrated with numerical results for a Stone–Wales defect in graphene.
doi_str_mv 10.1007/s00211-018-0979-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2104203442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2104203442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcF13FevprGnQyOCgNuFNyFNEmHDm0zJi2M_94MFVy5endx7n1wELolcE8A5CoBUEIwkAqDkgofz9ACFBeYUS7OcwaqsFDq8xJdpbQHILLkZIEeNiFaj2uTvCvMGPo2ja1d2TCM7TBNfVF3fnDtsCuaEIt-6sa2M2NGfLpGF43pkr_5vUv0sXl6X7_g7dvz6_pxiy0TasQSGlV6URHuKGVSKtOUNkcuStsI4pyrGyME8ZVglTNAmGJGqYopJx0oy5bobt49xPA1-TTqfZjikF9qSoBTYJzTTJGZsjGkFH2jD7HtTfzWBPRJkZ4V6axInxTpY-7QuZMyO-x8_Fv-v_QDxD9pZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104203442</pqid></control><display><type>article</type><title>Force-based atomistic/continuum blending for multilattices</title><source>Springer Nature</source><creator>Olson, Derek ; Li, Xingjie ; Ortner, Christoph ; Van Koten, Brian</creator><creatorcontrib>Olson, Derek ; Li, Xingjie ; Ortner, Christoph ; Van Koten, Brian</creatorcontrib><description>We formulate the blended force-based quasicontinuum method for multilattices and develop rigorous error estimates in terms of the approximation parameters: choice of atomistic region, blending region, and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomistic/continuum multiscale method for multilattices with point defects, including a rigorous convergence rate in terms of the computational cost. The analysis is illustrated with numerical results for a Stone–Wales defect in graphene.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-018-0979-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Simulation ; Theoretical</subject><ispartof>Numerische Mathematik, 2018-11, Vol.140 (3), p.703-754</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3</citedby><cites>FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Olson, Derek</creatorcontrib><creatorcontrib>Li, Xingjie</creatorcontrib><creatorcontrib>Ortner, Christoph</creatorcontrib><creatorcontrib>Van Koten, Brian</creatorcontrib><title>Force-based atomistic/continuum blending for multilattices</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We formulate the blended force-based quasicontinuum method for multilattices and develop rigorous error estimates in terms of the approximation parameters: choice of atomistic region, blending region, and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomistic/continuum multiscale method for multilattices with point defects, including a rigorous convergence rate in terms of the computational cost. The analysis is illustrated with numerical results for a Stone–Wales defect in graphene.</description><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Theoretical</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcF13FevprGnQyOCgNuFNyFNEmHDm0zJi2M_94MFVy5endx7n1wELolcE8A5CoBUEIwkAqDkgofz9ACFBeYUS7OcwaqsFDq8xJdpbQHILLkZIEeNiFaj2uTvCvMGPo2ja1d2TCM7TBNfVF3fnDtsCuaEIt-6sa2M2NGfLpGF43pkr_5vUv0sXl6X7_g7dvz6_pxiy0TasQSGlV6URHuKGVSKtOUNkcuStsI4pyrGyME8ZVglTNAmGJGqYopJx0oy5bobt49xPA1-TTqfZjikF9qSoBTYJzTTJGZsjGkFH2jD7HtTfzWBPRJkZ4V6axInxTpY-7QuZMyO-x8_Fv-v_QDxD9pZQ</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Olson, Derek</creator><creator>Li, Xingjie</creator><creator>Ortner, Christoph</creator><creator>Van Koten, Brian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Force-based atomistic/continuum blending for multilattices</title><author>Olson, Derek ; Li, Xingjie ; Ortner, Christoph ; Van Koten, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olson, Derek</creatorcontrib><creatorcontrib>Li, Xingjie</creatorcontrib><creatorcontrib>Ortner, Christoph</creatorcontrib><creatorcontrib>Van Koten, Brian</creatorcontrib><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olson, Derek</au><au>Li, Xingjie</au><au>Ortner, Christoph</au><au>Van Koten, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Force-based atomistic/continuum blending for multilattices</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>140</volume><issue>3</issue><spage>703</spage><epage>754</epage><pages>703-754</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We formulate the blended force-based quasicontinuum method for multilattices and develop rigorous error estimates in terms of the approximation parameters: choice of atomistic region, blending region, and continuum finite element mesh. Balancing the approximation parameters yields a convergent atomistic/continuum multiscale method for multilattices with point defects, including a rigorous convergence rate in terms of the computational cost. The analysis is illustrated with numerical results for a Stone–Wales defect in graphene.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-018-0979-x</doi><tpages>52</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2018-11, Vol.140 (3), p.703-754
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2104203442
source Springer Nature
subjects Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Simulation
Theoretical
title Force-based atomistic/continuum blending for multilattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A49%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Force-based%20atomistic/continuum%20blending%20for%20multilattices&rft.jtitle=Numerische%20Mathematik&rft.au=Olson,%20Derek&rft.date=2018-11-01&rft.volume=140&rft.issue=3&rft.spage=703&rft.epage=754&rft.pages=703-754&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-018-0979-x&rft_dat=%3Cproquest_cross%3E2104203442%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-70f96e5814d223779af6cd22456cf51dddbfa551e8538da01393a99839d7d09c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2104203442&rft_id=info:pmid/&rfr_iscdi=true