Loading…
Active Thermal Sensor for Improved Distributed Temperature Sensing in Haptic Arrays
The efficacy of integrating temperature sensors into compliant pressure sensing technologies, such as haptic sensing arrays, is limited by thermal losses into the substrate. A solution is proposed here whereby an active heat sink is incorporated into the sensor to mitigate these losses, while still...
Saved in:
Published in: | Journal of sensors 2018-01, Vol.2018 (2018), p.1-14 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The efficacy of integrating temperature sensors into compliant pressure sensing technologies, such as haptic sensing arrays, is limited by thermal losses into the substrate. A solution is proposed here whereby an active heat sink is incorporated into the sensor to mitigate these losses, while still permitting the use of common VLSI manufacturing methods and materials to be used in sensor fabrication. This active sink is capable of responding to unknown fluctuations in external temperature, that is, the temperature that is to be measured, and directly compensates in real time for the thermal power loss into the substrate by supplying an equivalent amount of power back into the thermal sensor. In this paper, the thermoelectric effects of the active heat sink/thermal sensor system are described and used to reduce the complexity of the system to a simple one-dimensional numerical model. This model is incorporated into a feedback system used to control the active heat sink and monitor the sensor output. A fabrication strategy is also described to show how such a technology can be incorporated into a common bonded silicon-on-insulator- (BSOI-) based capacitive pressure sensor array such as that used in some haptic sensing systems. |
---|---|
ISSN: | 1687-725X 1687-7268 |
DOI: | 10.1155/2018/9631236 |