Loading…

Active Thermal Sensor for Improved Distributed Temperature Sensing in Haptic Arrays

The efficacy of integrating temperature sensors into compliant pressure sensing technologies, such as haptic sensing arrays, is limited by thermal losses into the substrate. A solution is proposed here whereby an active heat sink is incorporated into the sensor to mitigate these losses, while still...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sensors 2018-01, Vol.2018 (2018), p.1-14
Main Authors: Cheneler, D., Ward, M. C. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c427t-471e15a221c485d3c303fd5d5324cea88ac452e94c2b46249ceadba39cde8a503
cites cdi_FETCH-LOGICAL-c427t-471e15a221c485d3c303fd5d5324cea88ac452e94c2b46249ceadba39cde8a503
container_end_page 14
container_issue 2018
container_start_page 1
container_title Journal of sensors
container_volume 2018
creator Cheneler, D.
Ward, M. C. L.
description The efficacy of integrating temperature sensors into compliant pressure sensing technologies, such as haptic sensing arrays, is limited by thermal losses into the substrate. A solution is proposed here whereby an active heat sink is incorporated into the sensor to mitigate these losses, while still permitting the use of common VLSI manufacturing methods and materials to be used in sensor fabrication. This active sink is capable of responding to unknown fluctuations in external temperature, that is, the temperature that is to be measured, and directly compensates in real time for the thermal power loss into the substrate by supplying an equivalent amount of power back into the thermal sensor. In this paper, the thermoelectric effects of the active heat sink/thermal sensor system are described and used to reduce the complexity of the system to a simple one-dimensional numerical model. This model is incorporated into a feedback system used to control the active heat sink and monitor the sensor output. A fabrication strategy is also described to show how such a technology can be incorporated into a common bonded silicon-on-insulator- (BSOI-) based capacitive pressure sensor array such as that used in some haptic sensing systems.
doi_str_mv 10.1155/2018/9631236
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2104965061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2104965061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c427t-471e15a221c485d3c303fd5d5324cea88ac452e94c2b46249ceadba39cde8a503</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgCs7pzbMUPGpdvpsex_zYYOBhE7yVLH3rMtYPk3ay_97MDj16CO_Dy48kPAhdE_xAiBAjiokapZIRyuQJGhCpkjihUp3-ZvF-ji6832AsWcLYAC3GprU7iJZrcKXeRguofO2iIpxZ2bh6B3n0aH3r7KprQ15C2YDTbefgx9rqI7JVNNVNa000dk7v_SU6K_TWw9VxDtHb89NyMo3nry-zyXgeG06TNuYJASI0pcRwJXJmGGZFLnLBKDegldKGCwopN3TFJeVpWOYrzVKTg9ICsyG67e8N__zswLfZpu5cFZ7MKME8lQJLEtR9r4yrvXdQZI2zpXb7jODsUFt2qC071hb4Xc_Xtsr1l_1P3_QagoFC_2mKKU0F-wZKiXZ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2104965061</pqid></control><display><type>article</type><title>Active Thermal Sensor for Improved Distributed Temperature Sensing in Haptic Arrays</title><source>Wiley Online Library Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Cheneler, D. ; Ward, M. C. L.</creator><contributor>Stassi, Stefano ; Stefano Stassi</contributor><creatorcontrib>Cheneler, D. ; Ward, M. C. L. ; Stassi, Stefano ; Stefano Stassi</creatorcontrib><description>The efficacy of integrating temperature sensors into compliant pressure sensing technologies, such as haptic sensing arrays, is limited by thermal losses into the substrate. A solution is proposed here whereby an active heat sink is incorporated into the sensor to mitigate these losses, while still permitting the use of common VLSI manufacturing methods and materials to be used in sensor fabrication. This active sink is capable of responding to unknown fluctuations in external temperature, that is, the temperature that is to be measured, and directly compensates in real time for the thermal power loss into the substrate by supplying an equivalent amount of power back into the thermal sensor. In this paper, the thermoelectric effects of the active heat sink/thermal sensor system are described and used to reduce the complexity of the system to a simple one-dimensional numerical model. This model is incorporated into a feedback system used to control the active heat sink and monitor the sensor output. A fabrication strategy is also described to show how such a technology can be incorporated into a common bonded silicon-on-insulator- (BSOI-) based capacitive pressure sensor array such as that used in some haptic sensing systems.</description><identifier>ISSN: 1687-725X</identifier><identifier>EISSN: 1687-7268</identifier><identifier>DOI: 10.1155/2018/9631236</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Arrays ; Heat ; Product design ; Resistance thermometers ; Sensors ; Silicon</subject><ispartof>Journal of sensors, 2018-01, Vol.2018 (2018), p.1-14</ispartof><rights>Copyright © 2018 D. Cheneler and M. C. L. Ward.</rights><rights>Copyright © 2018 D. Cheneler and M. C. L. Ward. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c427t-471e15a221c485d3c303fd5d5324cea88ac452e94c2b46249ceadba39cde8a503</citedby><cites>FETCH-LOGICAL-c427t-471e15a221c485d3c303fd5d5324cea88ac452e94c2b46249ceadba39cde8a503</cites><orcidid>0000-0003-1353-0329</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2104965061/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2104965061?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Stassi, Stefano</contributor><contributor>Stefano Stassi</contributor><creatorcontrib>Cheneler, D.</creatorcontrib><creatorcontrib>Ward, M. C. L.</creatorcontrib><title>Active Thermal Sensor for Improved Distributed Temperature Sensing in Haptic Arrays</title><title>Journal of sensors</title><description>The efficacy of integrating temperature sensors into compliant pressure sensing technologies, such as haptic sensing arrays, is limited by thermal losses into the substrate. A solution is proposed here whereby an active heat sink is incorporated into the sensor to mitigate these losses, while still permitting the use of common VLSI manufacturing methods and materials to be used in sensor fabrication. This active sink is capable of responding to unknown fluctuations in external temperature, that is, the temperature that is to be measured, and directly compensates in real time for the thermal power loss into the substrate by supplying an equivalent amount of power back into the thermal sensor. In this paper, the thermoelectric effects of the active heat sink/thermal sensor system are described and used to reduce the complexity of the system to a simple one-dimensional numerical model. This model is incorporated into a feedback system used to control the active heat sink and monitor the sensor output. A fabrication strategy is also described to show how such a technology can be incorporated into a common bonded silicon-on-insulator- (BSOI-) based capacitive pressure sensor array such as that used in some haptic sensing systems.</description><subject>Arrays</subject><subject>Heat</subject><subject>Product design</subject><subject>Resistance thermometers</subject><subject>Sensors</subject><subject>Silicon</subject><issn>1687-725X</issn><issn>1687-7268</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0M1LwzAYBvAgCs7pzbMUPGpdvpsex_zYYOBhE7yVLH3rMtYPk3ay_97MDj16CO_Dy48kPAhdE_xAiBAjiokapZIRyuQJGhCpkjihUp3-ZvF-ji6832AsWcLYAC3GprU7iJZrcKXeRguofO2iIpxZ2bh6B3n0aH3r7KprQ15C2YDTbefgx9rqI7JVNNVNa000dk7v_SU6K_TWw9VxDtHb89NyMo3nry-zyXgeG06TNuYJASI0pcRwJXJmGGZFLnLBKDegldKGCwopN3TFJeVpWOYrzVKTg9ICsyG67e8N__zswLfZpu5cFZ7MKME8lQJLEtR9r4yrvXdQZI2zpXb7jODsUFt2qC071hb4Xc_Xtsr1l_1P3_QagoFC_2mKKU0F-wZKiXZ4</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Cheneler, D.</creator><creator>Ward, M. C. L.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7U5</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-1353-0329</orcidid></search><sort><creationdate>20180101</creationdate><title>Active Thermal Sensor for Improved Distributed Temperature Sensing in Haptic Arrays</title><author>Cheneler, D. ; Ward, M. C. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c427t-471e15a221c485d3c303fd5d5324cea88ac452e94c2b46249ceadba39cde8a503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arrays</topic><topic>Heat</topic><topic>Product design</topic><topic>Resistance thermometers</topic><topic>Sensors</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheneler, D.</creatorcontrib><creatorcontrib>Ward, M. C. L.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of sensors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheneler, D.</au><au>Ward, M. C. L.</au><au>Stassi, Stefano</au><au>Stefano Stassi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active Thermal Sensor for Improved Distributed Temperature Sensing in Haptic Arrays</atitle><jtitle>Journal of sensors</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1687-725X</issn><eissn>1687-7268</eissn><abstract>The efficacy of integrating temperature sensors into compliant pressure sensing technologies, such as haptic sensing arrays, is limited by thermal losses into the substrate. A solution is proposed here whereby an active heat sink is incorporated into the sensor to mitigate these losses, while still permitting the use of common VLSI manufacturing methods and materials to be used in sensor fabrication. This active sink is capable of responding to unknown fluctuations in external temperature, that is, the temperature that is to be measured, and directly compensates in real time for the thermal power loss into the substrate by supplying an equivalent amount of power back into the thermal sensor. In this paper, the thermoelectric effects of the active heat sink/thermal sensor system are described and used to reduce the complexity of the system to a simple one-dimensional numerical model. This model is incorporated into a feedback system used to control the active heat sink and monitor the sensor output. A fabrication strategy is also described to show how such a technology can be incorporated into a common bonded silicon-on-insulator- (BSOI-) based capacitive pressure sensor array such as that used in some haptic sensing systems.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/9631236</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1353-0329</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-725X
ispartof Journal of sensors, 2018-01, Vol.2018 (2018), p.1-14
issn 1687-725X
1687-7268
language eng
recordid cdi_proquest_journals_2104965061
source Wiley Online Library Open Access; ProQuest Publicly Available Content database
subjects Arrays
Heat
Product design
Resistance thermometers
Sensors
Silicon
title Active Thermal Sensor for Improved Distributed Temperature Sensing in Haptic Arrays
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20Thermal%20Sensor%20for%20Improved%20Distributed%20Temperature%20Sensing%20in%20Haptic%20Arrays&rft.jtitle=Journal%20of%20sensors&rft.au=Cheneler,%20D.&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1687-725X&rft.eissn=1687-7268&rft_id=info:doi/10.1155/2018/9631236&rft_dat=%3Cproquest_cross%3E2104965061%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c427t-471e15a221c485d3c303fd5d5324cea88ac452e94c2b46249ceadba39cde8a503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2104965061&rft_id=info:pmid/&rfr_iscdi=true