Loading…
Suppressing Numerical Oscillation for Nonlinear Hyperbolic Equations by Wavelet Analysis
In the numerical solution for nonlinear hyperbolic equations, numerical oscillation often shows and hides the real solution with the progress of computation. Using wavelet analysis, a dual wavelet shrinkage procedure is proposed, which allows one to extract the real solution hidden in the numerical...
Saved in:
Published in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-8 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c317t-abebeaedfab0c22de6229c2ea690bc72f6050800f48c2faf7627d8f0a89e6a6b3 |
container_end_page | 8 |
container_issue | 2018 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2018 |
creator | Wang, Tianlin Su, Shaojuan Yu, Peng-Yao Zhao, Yong |
description | In the numerical solution for nonlinear hyperbolic equations, numerical oscillation often shows and hides the real solution with the progress of computation. Using wavelet analysis, a dual wavelet shrinkage procedure is proposed, which allows one to extract the real solution hidden in the numerical solution with oscillation. The dual wavelet shrinkage procedure is introduced after applying the local differential quadrature method, which is a straightforward technique to calculate the spatial derivatives. Results free from numerical oscillation can be obtained, which can not only capture the position of shock and rarefaction waves, but also keep the sharp gradient structure within the shock wave. Three model problems—a one-dimensional dam-break flow governed by shallow water equations, and the propagation of a one-dimensional and a two-dimensional shock wave controlled by the Euler equations—are used to confirm the validity of the proposed procedure. |
doi_str_mv | 10.1155/2018/4859469 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2105000783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2105000783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c317t-abebeaedfab0c22de6229c2ea690bc72f6050800f48c2faf7627d8f0a89e6a6b3</originalsourceid><addsrcrecordid>eNqF0EFLwzAUwPEiCs7pzbMEPGpdkrZJehxjOmFsBxV3K2n6ohlZ2yWt0m9vZwcePeUdfu8R_kFwTfADIUkyoZiISSySNGbpSTAiCYvChMT8tJ8xjUNCo815cOH9FmNKEiJGwealrWsH3pvyA63aHTijpEVrr4y1sjFViXTl0KoqrSlBOrToanB5ZY1C8337KzzKO_Quv8BCg6altJ03_jI409J6uDq-4-Dtcf46W4TL9dPzbLoMVUR4E8occpBQaJljRWkBjNJUUZAsxbniVDOcYIGxjoWiWmrOKC-ExlKkwCTLo3FwO9ytXbVvwTfZtmpd_wmfUdLvYsxF1Kv7QSlXee9AZ7UzO-m6jODs0C47tMuO7Xp-N_BPUxby2_ynbwYNvQEt_zTFnPfRfwDX63oE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2105000783</pqid></control><display><type>article</type><title>Suppressing Numerical Oscillation for Nonlinear Hyperbolic Equations by Wavelet Analysis</title><source>ProQuest - Publicly Available Content Database</source><source>Wiley Open Access</source><creator>Wang, Tianlin ; Su, Shaojuan ; Yu, Peng-Yao ; Zhao, Yong</creator><contributor>Markovic, Damijan ; Damijan Markovic</contributor><creatorcontrib>Wang, Tianlin ; Su, Shaojuan ; Yu, Peng-Yao ; Zhao, Yong ; Markovic, Damijan ; Damijan Markovic</creatorcontrib><description>In the numerical solution for nonlinear hyperbolic equations, numerical oscillation often shows and hides the real solution with the progress of computation. Using wavelet analysis, a dual wavelet shrinkage procedure is proposed, which allows one to extract the real solution hidden in the numerical solution with oscillation. The dual wavelet shrinkage procedure is introduced after applying the local differential quadrature method, which is a straightforward technique to calculate the spatial derivatives. Results free from numerical oscillation can be obtained, which can not only capture the position of shock and rarefaction waves, but also keep the sharp gradient structure within the shock wave. Three model problems—a one-dimensional dam-break flow governed by shallow water equations, and the propagation of a one-dimensional and a two-dimensional shock wave controlled by the Euler equations—are used to confirm the validity of the proposed procedure.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2018/4859469</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Applied mathematics ; Computational physics ; Decomposition ; Engineering ; Euler-Lagrange equation ; Fluid dynamics ; Methods ; Neighborhoods ; Numerical analysis ; Partial differential equations ; Quadratures ; Rarefaction ; Shallow water equations ; Shock wave propagation ; Shock waves ; Shrinkage ; Simulation ; Turbulence models ; Wavelet analysis ; Wavelet transforms</subject><ispartof>Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-8</ispartof><rights>Copyright © 2018 Yong Zhao et al.</rights><rights>Copyright © 2018 Yong Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c317t-abebeaedfab0c22de6229c2ea690bc72f6050800f48c2faf7627d8f0a89e6a6b3</cites><orcidid>0000-0001-6950-0183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2105000783/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2105000783?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><contributor>Markovic, Damijan</contributor><contributor>Damijan Markovic</contributor><creatorcontrib>Wang, Tianlin</creatorcontrib><creatorcontrib>Su, Shaojuan</creatorcontrib><creatorcontrib>Yu, Peng-Yao</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><title>Suppressing Numerical Oscillation for Nonlinear Hyperbolic Equations by Wavelet Analysis</title><title>Mathematical problems in engineering</title><description>In the numerical solution for nonlinear hyperbolic equations, numerical oscillation often shows and hides the real solution with the progress of computation. Using wavelet analysis, a dual wavelet shrinkage procedure is proposed, which allows one to extract the real solution hidden in the numerical solution with oscillation. The dual wavelet shrinkage procedure is introduced after applying the local differential quadrature method, which is a straightforward technique to calculate the spatial derivatives. Results free from numerical oscillation can be obtained, which can not only capture the position of shock and rarefaction waves, but also keep the sharp gradient structure within the shock wave. Three model problems—a one-dimensional dam-break flow governed by shallow water equations, and the propagation of a one-dimensional and a two-dimensional shock wave controlled by the Euler equations—are used to confirm the validity of the proposed procedure.</description><subject>Applied mathematics</subject><subject>Computational physics</subject><subject>Decomposition</subject><subject>Engineering</subject><subject>Euler-Lagrange equation</subject><subject>Fluid dynamics</subject><subject>Methods</subject><subject>Neighborhoods</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Quadratures</subject><subject>Rarefaction</subject><subject>Shallow water equations</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Shrinkage</subject><subject>Simulation</subject><subject>Turbulence models</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0EFLwzAUwPEiCs7pzbMEPGpdkrZJehxjOmFsBxV3K2n6ohlZ2yWt0m9vZwcePeUdfu8R_kFwTfADIUkyoZiISSySNGbpSTAiCYvChMT8tJ8xjUNCo815cOH9FmNKEiJGwealrWsH3pvyA63aHTijpEVrr4y1sjFViXTl0KoqrSlBOrToanB5ZY1C8337KzzKO_Quv8BCg6altJ03_jI409J6uDq-4-Dtcf46W4TL9dPzbLoMVUR4E8occpBQaJljRWkBjNJUUZAsxbniVDOcYIGxjoWiWmrOKC-ExlKkwCTLo3FwO9ytXbVvwTfZtmpd_wmfUdLvYsxF1Kv7QSlXee9AZ7UzO-m6jODs0C47tMuO7Xp-N_BPUxby2_ynbwYNvQEt_zTFnPfRfwDX63oE</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wang, Tianlin</creator><creator>Su, Shaojuan</creator><creator>Yu, Peng-Yao</creator><creator>Zhao, Yong</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-6950-0183</orcidid></search><sort><creationdate>20180101</creationdate><title>Suppressing Numerical Oscillation for Nonlinear Hyperbolic Equations by Wavelet Analysis</title><author>Wang, Tianlin ; Su, Shaojuan ; Yu, Peng-Yao ; Zhao, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c317t-abebeaedfab0c22de6229c2ea690bc72f6050800f48c2faf7627d8f0a89e6a6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied mathematics</topic><topic>Computational physics</topic><topic>Decomposition</topic><topic>Engineering</topic><topic>Euler-Lagrange equation</topic><topic>Fluid dynamics</topic><topic>Methods</topic><topic>Neighborhoods</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Quadratures</topic><topic>Rarefaction</topic><topic>Shallow water equations</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Shrinkage</topic><topic>Simulation</topic><topic>Turbulence models</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Tianlin</creatorcontrib><creatorcontrib>Su, Shaojuan</creatorcontrib><creatorcontrib>Yu, Peng-Yao</creatorcontrib><creatorcontrib>Zhao, Yong</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Tianlin</au><au>Su, Shaojuan</au><au>Yu, Peng-Yao</au><au>Zhao, Yong</au><au>Markovic, Damijan</au><au>Damijan Markovic</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Suppressing Numerical Oscillation for Nonlinear Hyperbolic Equations by Wavelet Analysis</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>2018</volume><issue>2018</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>In the numerical solution for nonlinear hyperbolic equations, numerical oscillation often shows and hides the real solution with the progress of computation. Using wavelet analysis, a dual wavelet shrinkage procedure is proposed, which allows one to extract the real solution hidden in the numerical solution with oscillation. The dual wavelet shrinkage procedure is introduced after applying the local differential quadrature method, which is a straightforward technique to calculate the spatial derivatives. Results free from numerical oscillation can be obtained, which can not only capture the position of shock and rarefaction waves, but also keep the sharp gradient structure within the shock wave. Three model problems—a one-dimensional dam-break flow governed by shallow water equations, and the propagation of a one-dimensional and a two-dimensional shock wave controlled by the Euler equations—are used to confirm the validity of the proposed procedure.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2018/4859469</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6950-0183</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2018-01, Vol.2018 (2018), p.1-8 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_journals_2105000783 |
source | ProQuest - Publicly Available Content Database; Wiley Open Access |
subjects | Applied mathematics Computational physics Decomposition Engineering Euler-Lagrange equation Fluid dynamics Methods Neighborhoods Numerical analysis Partial differential equations Quadratures Rarefaction Shallow water equations Shock wave propagation Shock waves Shrinkage Simulation Turbulence models Wavelet analysis Wavelet transforms |
title | Suppressing Numerical Oscillation for Nonlinear Hyperbolic Equations by Wavelet Analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T14%3A12%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Suppressing%20Numerical%20Oscillation%20for%20Nonlinear%20Hyperbolic%20Equations%20by%20Wavelet%20Analysis&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Wang,%20Tianlin&rft.date=2018-01-01&rft.volume=2018&rft.issue=2018&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2018/4859469&rft_dat=%3Cproquest_cross%3E2105000783%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c317t-abebeaedfab0c22de6229c2ea690bc72f6050800f48c2faf7627d8f0a89e6a6b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2105000783&rft_id=info:pmid/&rfr_iscdi=true |