Loading…

A note on GLR charts for monitoring count processes

Various generalized likelihood ratio (GLR) charts have been proposed to monitor count processes such as binomial, Bernoulli, Poisson, and multinomial processes. The advantages of GLR charts are that designing the chart is relatively easy, estimates of the process change‐point and shift size are avai...

Full description

Saved in:
Bibliographic Details
Published in:Quality and reliability engineering international 2018-10, Vol.34 (6), p.1041-1044
Main Authors: Lee, Jaeheon, Woodall, William H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3366-2498572193b1cd8d367a0373b068c5ed734f40c9c016f48bc2e61d9973972313
cites cdi_FETCH-LOGICAL-c3366-2498572193b1cd8d367a0373b068c5ed734f40c9c016f48bc2e61d9973972313
container_end_page 1044
container_issue 6
container_start_page 1041
container_title Quality and reliability engineering international
container_volume 34
creator Lee, Jaeheon
Woodall, William H.
description Various generalized likelihood ratio (GLR) charts have been proposed to monitor count processes such as binomial, Bernoulli, Poisson, and multinomial processes. The advantages of GLR charts are that designing the chart is relatively easy, estimates of the process change‐point and shift size are available for post‐signal diagnosis, and they are effective in detecting a wide range of shifts in the process parameter. However, for some special cases of the observations, such as observing all defective items or all non‐defective items, the GLR chart statistic for monitoring a count process has been said to be undefined. We show that the GLR chart statistic is always well defined.
doi_str_mv 10.1002/qre.2306
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2108800823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2108800823</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3366-2498572193b1cd8d367a0373b068c5ed734f40c9c016f48bc2e61d9973972313</originalsourceid><addsrcrecordid>eNp10E9LwzAYx_EgCtYp-BICXrx0PsnT5c9xjDmFgjh2D22aasfWbEmL7N3brV49PZcPzw--hDwymDIA_nIMbsoRxBVJGGidMoHqmiQgM5UqYPKW3MW4BRiwVgnBOW1956hv6SpfU_tdhC7S2ge6923T-dC0X9T6vu3oIXjrYnTxntzUxS66h787IZvX5WbxluYfq_fFPE8tohApz7SaSc40lsxWqkIhC0CJJQhlZ66SmNUZWG2BiTpTpeVOsEpriVpyZDghT-PbYfjYu9iZre9DOywazkApAMVxUM-jssHHGFxtDqHZF-FkGJhzETMUMeciA01H-tPs3OlfZz7Xy4v_BTEpXsk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2108800823</pqid></control><display><type>article</type><title>A note on GLR charts for monitoring count processes</title><source>Wiley</source><creator>Lee, Jaeheon ; Woodall, William H.</creator><creatorcontrib>Lee, Jaeheon ; Woodall, William H.</creatorcontrib><description>Various generalized likelihood ratio (GLR) charts have been proposed to monitor count processes such as binomial, Bernoulli, Poisson, and multinomial processes. The advantages of GLR charts are that designing the chart is relatively easy, estimates of the process change‐point and shift size are available for post‐signal diagnosis, and they are effective in detecting a wide range of shifts in the process parameter. However, for some special cases of the observations, such as observing all defective items or all non‐defective items, the GLR chart statistic for monitoring a count process has been said to be undefined. We show that the GLR chart statistic is always well defined.</description><identifier>ISSN: 0748-8017</identifier><identifier>EISSN: 1099-1638</identifier><identifier>DOI: 10.1002/qre.2306</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Charts ; Control charts ; count process ; generalized likelihood ratio chart ; Likelihood ratio ; maximum likelihood estimator ; Monitoring ; Process parameters ; Signal processing ; statistical process control</subject><ispartof>Quality and reliability engineering international, 2018-10, Vol.34 (6), p.1041-1044</ispartof><rights>2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3366-2498572193b1cd8d367a0373b068c5ed734f40c9c016f48bc2e61d9973972313</citedby><cites>FETCH-LOGICAL-c3366-2498572193b1cd8d367a0373b068c5ed734f40c9c016f48bc2e61d9973972313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Lee, Jaeheon</creatorcontrib><creatorcontrib>Woodall, William H.</creatorcontrib><title>A note on GLR charts for monitoring count processes</title><title>Quality and reliability engineering international</title><description>Various generalized likelihood ratio (GLR) charts have been proposed to monitor count processes such as binomial, Bernoulli, Poisson, and multinomial processes. The advantages of GLR charts are that designing the chart is relatively easy, estimates of the process change‐point and shift size are available for post‐signal diagnosis, and they are effective in detecting a wide range of shifts in the process parameter. However, for some special cases of the observations, such as observing all defective items or all non‐defective items, the GLR chart statistic for monitoring a count process has been said to be undefined. We show that the GLR chart statistic is always well defined.</description><subject>Charts</subject><subject>Control charts</subject><subject>count process</subject><subject>generalized likelihood ratio chart</subject><subject>Likelihood ratio</subject><subject>maximum likelihood estimator</subject><subject>Monitoring</subject><subject>Process parameters</subject><subject>Signal processing</subject><subject>statistical process control</subject><issn>0748-8017</issn><issn>1099-1638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp10E9LwzAYx_EgCtYp-BICXrx0PsnT5c9xjDmFgjh2D22aasfWbEmL7N3brV49PZcPzw--hDwymDIA_nIMbsoRxBVJGGidMoHqmiQgM5UqYPKW3MW4BRiwVgnBOW1956hv6SpfU_tdhC7S2ge6923T-dC0X9T6vu3oIXjrYnTxntzUxS66h787IZvX5WbxluYfq_fFPE8tohApz7SaSc40lsxWqkIhC0CJJQhlZ66SmNUZWG2BiTpTpeVOsEpriVpyZDghT-PbYfjYu9iZre9DOywazkApAMVxUM-jssHHGFxtDqHZF-FkGJhzETMUMeciA01H-tPs3OlfZz7Xy4v_BTEpXsk</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Lee, Jaeheon</creator><creator>Woodall, William H.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope></search><sort><creationdate>201810</creationdate><title>A note on GLR charts for monitoring count processes</title><author>Lee, Jaeheon ; Woodall, William H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3366-2498572193b1cd8d367a0373b068c5ed734f40c9c016f48bc2e61d9973972313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charts</topic><topic>Control charts</topic><topic>count process</topic><topic>generalized likelihood ratio chart</topic><topic>Likelihood ratio</topic><topic>maximum likelihood estimator</topic><topic>Monitoring</topic><topic>Process parameters</topic><topic>Signal processing</topic><topic>statistical process control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jaeheon</creatorcontrib><creatorcontrib>Woodall, William H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><jtitle>Quality and reliability engineering international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jaeheon</au><au>Woodall, William H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on GLR charts for monitoring count processes</atitle><jtitle>Quality and reliability engineering international</jtitle><date>2018-10</date><risdate>2018</risdate><volume>34</volume><issue>6</issue><spage>1041</spage><epage>1044</epage><pages>1041-1044</pages><issn>0748-8017</issn><eissn>1099-1638</eissn><abstract>Various generalized likelihood ratio (GLR) charts have been proposed to monitor count processes such as binomial, Bernoulli, Poisson, and multinomial processes. The advantages of GLR charts are that designing the chart is relatively easy, estimates of the process change‐point and shift size are available for post‐signal diagnosis, and they are effective in detecting a wide range of shifts in the process parameter. However, for some special cases of the observations, such as observing all defective items or all non‐defective items, the GLR chart statistic for monitoring a count process has been said to be undefined. We show that the GLR chart statistic is always well defined.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/qre.2306</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-8017
ispartof Quality and reliability engineering international, 2018-10, Vol.34 (6), p.1041-1044
issn 0748-8017
1099-1638
language eng
recordid cdi_proquest_journals_2108800823
source Wiley
subjects Charts
Control charts
count process
generalized likelihood ratio chart
Likelihood ratio
maximum likelihood estimator
Monitoring
Process parameters
Signal processing
statistical process control
title A note on GLR charts for monitoring count processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20GLR%20charts%20for%20monitoring%20count%20processes&rft.jtitle=Quality%20and%20reliability%20engineering%20international&rft.au=Lee,%20Jaeheon&rft.date=2018-10&rft.volume=34&rft.issue=6&rft.spage=1041&rft.epage=1044&rft.pages=1041-1044&rft.issn=0748-8017&rft.eissn=1099-1638&rft_id=info:doi/10.1002/qre.2306&rft_dat=%3Cproquest_cross%3E2108800823%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3366-2498572193b1cd8d367a0373b068c5ed734f40c9c016f48bc2e61d9973972313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2108800823&rft_id=info:pmid/&rfr_iscdi=true