Loading…

Drag and lift forces on particles in a rotating flow

A freely rotating sphere in a solid-body rotating flow is experimentally investigated. When the sphere is buoyant, it reaches an equilibrium position from which drag and lift coefficients are determined over a wide range of particle Reynolds numbers (2 ≤ Re ≤ 1060). The wake behind the sphere is vis...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2010-01, Vol.643, p.1-31
Main Authors: BLUEMINK, J. J., LOHSE, D., PROSPERETTI, A., VAN WIJNGAARDEN, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-6b8ed368800c84283ba4d065c42d829b6612fbb2f6a333442fae087442ff59d83
cites cdi_FETCH-LOGICAL-c450t-6b8ed368800c84283ba4d065c42d829b6612fbb2f6a333442fae087442ff59d83
container_end_page 31
container_issue
container_start_page 1
container_title Journal of fluid mechanics
container_volume 643
creator BLUEMINK, J. J.
LOHSE, D.
PROSPERETTI, A.
VAN WIJNGAARDEN, L.
description A freely rotating sphere in a solid-body rotating flow is experimentally investigated. When the sphere is buoyant, it reaches an equilibrium position from which drag and lift coefficients are determined over a wide range of particle Reynolds numbers (2 ≤ Re ≤ 1060). The wake behind the sphere is visualized and appears to deflect strongly when the sphere is close to the cylinder axis. The spin rate of the sphere is recorded. In fluids with low viscosity, spin rates more than twice as large as the angular velocity of the cylinder can be observed. By comparing numerical results for a fixed but freely spinning sphere with a fixed non-spinning sphere for Re ≤ 200, the effect of the sphere spin on the lift coefficient is determined. The experimentally and numerically determined lift and drag coefficients and particle spin rates all show excellent agreement for Re ≤ 200. The combination of the experimental and numerical results allows for a parameterization of the lift and drag coefficients of a freely rotating sphere as function of the Reynolds number, the particle spin and the location of the particle with respect to the cylinder axis. Although the effect of the flow rotation on the particle spin is different in shear flow and solid-body rotating flow, the effect of spin on lift is found to be comparable for both types of flow.
doi_str_mv 10.1017/S0022112009991881
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_210880157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112009991881</cupid><sourcerecordid>1940533871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-6b8ed368800c84283ba4d065c42d829b6612fbb2f6a333442fae087442ff59d83</originalsourceid><addsrcrecordid>eNp1UFtLwzAUDqLgnP4A34LgY_Xk0jR5dF6qMFDZfA5p2ozMrp1Jh_rvbdmYD-LTOYfvcj4-hM4JXBEg2fUMgFJCKIBSikhJDtCIcKGSTPD0EI0GOBnwY3QS4xKAMFDZCPG7YBbYNCWuveuwa4OtIm4bvDah87buD99gg0Pbmc43C-zq9vMUHTlTx-psN8fo7eF-fvuYTJ_zp9ubaWJ5Cl0iClmVTEgJYCWnkhWGlyBSy2kpqSqEINQVBXXCMMY4p85UILNhcakqJRuji63vOrQfmyp2etluQtO_1JRA70vSrCeRLcmGNsZQOb0OfmXCtyagh270n256zeXO2ERrahdMY33cCyllUhE6eCdbno9d9bXHTXjXImNZqkX-qidi8pLns7mmPZ_tsphVEXy5qH4T_5_mB-VMfvc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>210880157</pqid></control><display><type>article</type><title>Drag and lift forces on particles in a rotating flow</title><source>Cambridge University Press</source><creator>BLUEMINK, J. J. ; LOHSE, D. ; PROSPERETTI, A. ; VAN WIJNGAARDEN, L.</creator><creatorcontrib>BLUEMINK, J. J. ; LOHSE, D. ; PROSPERETTI, A. ; VAN WIJNGAARDEN, L.</creatorcontrib><description>A freely rotating sphere in a solid-body rotating flow is experimentally investigated. When the sphere is buoyant, it reaches an equilibrium position from which drag and lift coefficients are determined over a wide range of particle Reynolds numbers (2 ≤ Re ≤ 1060). The wake behind the sphere is visualized and appears to deflect strongly when the sphere is close to the cylinder axis. The spin rate of the sphere is recorded. In fluids with low viscosity, spin rates more than twice as large as the angular velocity of the cylinder can be observed. By comparing numerical results for a fixed but freely spinning sphere with a fixed non-spinning sphere for Re ≤ 200, the effect of the sphere spin on the lift coefficient is determined. The experimentally and numerically determined lift and drag coefficients and particle spin rates all show excellent agreement for Re ≤ 200. The combination of the experimental and numerical results allows for a parameterization of the lift and drag coefficients of a freely rotating sphere as function of the Reynolds number, the particle spin and the location of the particle with respect to the cylinder axis. Although the effect of the flow rotation on the particle spin is different in shear flow and solid-body rotating flow, the effect of spin on lift is found to be comparable for both types of flow.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112009991881</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Comparative studies ; Exact sciences and technology ; Experiments ; Fluid dynamics ; Fluid mechanics ; Fundamental areas of phenomenology (including applications) ; Instrumentation for fluid dynamics ; Multiphase and particle-laden flows ; Nonhomogeneous flows ; particle/fluid flows ; Physics ; Reynolds number ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2010-01, Vol.643, p.1-31</ispartof><rights>Copyright © Cambridge University Press 2009</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-6b8ed368800c84283ba4d065c42d829b6612fbb2f6a333442fae087442ff59d83</citedby><cites>FETCH-LOGICAL-c450t-6b8ed368800c84283ba4d065c42d829b6612fbb2f6a333442fae087442ff59d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112009991881/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>314,776,780,27898,27899,72928</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22389127$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BLUEMINK, J. J.</creatorcontrib><creatorcontrib>LOHSE, D.</creatorcontrib><creatorcontrib>PROSPERETTI, A.</creatorcontrib><creatorcontrib>VAN WIJNGAARDEN, L.</creatorcontrib><title>Drag and lift forces on particles in a rotating flow</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A freely rotating sphere in a solid-body rotating flow is experimentally investigated. When the sphere is buoyant, it reaches an equilibrium position from which drag and lift coefficients are determined over a wide range of particle Reynolds numbers (2 ≤ Re ≤ 1060). The wake behind the sphere is visualized and appears to deflect strongly when the sphere is close to the cylinder axis. The spin rate of the sphere is recorded. In fluids with low viscosity, spin rates more than twice as large as the angular velocity of the cylinder can be observed. By comparing numerical results for a fixed but freely spinning sphere with a fixed non-spinning sphere for Re ≤ 200, the effect of the sphere spin on the lift coefficient is determined. The experimentally and numerically determined lift and drag coefficients and particle spin rates all show excellent agreement for Re ≤ 200. The combination of the experimental and numerical results allows for a parameterization of the lift and drag coefficients of a freely rotating sphere as function of the Reynolds number, the particle spin and the location of the particle with respect to the cylinder axis. Although the effect of the flow rotation on the particle spin is different in shear flow and solid-body rotating flow, the effect of spin on lift is found to be comparable for both types of flow.</description><subject>Comparative studies</subject><subject>Exact sciences and technology</subject><subject>Experiments</subject><subject>Fluid dynamics</subject><subject>Fluid mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instrumentation for fluid dynamics</subject><subject>Multiphase and particle-laden flows</subject><subject>Nonhomogeneous flows</subject><subject>particle/fluid flows</subject><subject>Physics</subject><subject>Reynolds number</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1UFtLwzAUDqLgnP4A34LgY_Xk0jR5dF6qMFDZfA5p2ozMrp1Jh_rvbdmYD-LTOYfvcj4-hM4JXBEg2fUMgFJCKIBSikhJDtCIcKGSTPD0EI0GOBnwY3QS4xKAMFDZCPG7YBbYNCWuveuwa4OtIm4bvDah87buD99gg0Pbmc43C-zq9vMUHTlTx-psN8fo7eF-fvuYTJ_zp9ubaWJ5Cl0iClmVTEgJYCWnkhWGlyBSy2kpqSqEINQVBXXCMMY4p85UILNhcakqJRuji63vOrQfmyp2etluQtO_1JRA70vSrCeRLcmGNsZQOb0OfmXCtyagh270n256zeXO2ERrahdMY33cCyllUhE6eCdbno9d9bXHTXjXImNZqkX-qidi8pLns7mmPZ_tsphVEXy5qH4T_5_mB-VMfvc</recordid><startdate>20100125</startdate><enddate>20100125</enddate><creator>BLUEMINK, J. J.</creator><creator>LOHSE, D.</creator><creator>PROSPERETTI, A.</creator><creator>VAN WIJNGAARDEN, L.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20100125</creationdate><title>Drag and lift forces on particles in a rotating flow</title><author>BLUEMINK, J. J. ; LOHSE, D. ; PROSPERETTI, A. ; VAN WIJNGAARDEN, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-6b8ed368800c84283ba4d065c42d829b6612fbb2f6a333442fae087442ff59d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Comparative studies</topic><topic>Exact sciences and technology</topic><topic>Experiments</topic><topic>Fluid dynamics</topic><topic>Fluid mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instrumentation for fluid dynamics</topic><topic>Multiphase and particle-laden flows</topic><topic>Nonhomogeneous flows</topic><topic>particle/fluid flows</topic><topic>Physics</topic><topic>Reynolds number</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BLUEMINK, J. J.</creatorcontrib><creatorcontrib>LOHSE, D.</creatorcontrib><creatorcontrib>PROSPERETTI, A.</creatorcontrib><creatorcontrib>VAN WIJNGAARDEN, L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BLUEMINK, J. J.</au><au>LOHSE, D.</au><au>PROSPERETTI, A.</au><au>VAN WIJNGAARDEN, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drag and lift forces on particles in a rotating flow</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2010-01-25</date><risdate>2010</risdate><volume>643</volume><spage>1</spage><epage>31</epage><pages>1-31</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>A freely rotating sphere in a solid-body rotating flow is experimentally investigated. When the sphere is buoyant, it reaches an equilibrium position from which drag and lift coefficients are determined over a wide range of particle Reynolds numbers (2 ≤ Re ≤ 1060). The wake behind the sphere is visualized and appears to deflect strongly when the sphere is close to the cylinder axis. The spin rate of the sphere is recorded. In fluids with low viscosity, spin rates more than twice as large as the angular velocity of the cylinder can be observed. By comparing numerical results for a fixed but freely spinning sphere with a fixed non-spinning sphere for Re ≤ 200, the effect of the sphere spin on the lift coefficient is determined. The experimentally and numerically determined lift and drag coefficients and particle spin rates all show excellent agreement for Re ≤ 200. The combination of the experimental and numerical results allows for a parameterization of the lift and drag coefficients of a freely rotating sphere as function of the Reynolds number, the particle spin and the location of the particle with respect to the cylinder axis. Although the effect of the flow rotation on the particle spin is different in shear flow and solid-body rotating flow, the effect of spin on lift is found to be comparable for both types of flow.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112009991881</doi><tpages>31</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2010-01, Vol.643, p.1-31
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_210880157
source Cambridge University Press
subjects Comparative studies
Exact sciences and technology
Experiments
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Instrumentation for fluid dynamics
Multiphase and particle-laden flows
Nonhomogeneous flows
particle/fluid flows
Physics
Reynolds number
Viscosity
title Drag and lift forces on particles in a rotating flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-03T18%3A20%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drag%20and%20lift%20forces%20on%20particles%20in%20a%20rotating%20flow&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=BLUEMINK,%20J.%20J.&rft.date=2010-01-25&rft.volume=643&rft.spage=1&rft.epage=31&rft.pages=1-31&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112009991881&rft_dat=%3Cproquest_cross%3E1940533871%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-6b8ed368800c84283ba4d065c42d829b6612fbb2f6a333442fae087442ff59d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=210880157&rft_id=info:pmid/&rft_cupid=10_1017_S0022112009991881&rfr_iscdi=true