Loading…

eNOS function is developmentally regulated: uncoupling of eNOS occurs postnatally

At birth, the transition to gas breathing requires the function of endothelial vasoactive agents. We investigated the function of endothelial nitric oxide synthase (eNOS) in pulmonary artery (PA) vessels and endothelial cells isolated from fetal and young (4-wk) sheep. We found greater relaxations t...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Lung cellular and molecular physiology 2006-02, Vol.34 (2), p.L232
Main Authors: Mata-Greenwood, Eugenia, Jenkins, Chrystal, Farrow, Kathryn N, G Ganesh Konduri
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:At birth, the transition to gas breathing requires the function of endothelial vasoactive agents. We investigated the function of endothelial nitric oxide synthase (eNOS) in pulmonary artery (PA) vessels and endothelial cells isolated from fetal and young (4-wk) sheep. We found greater relaxations to the NOS activator A-23187 in 4-wk-old compared with fetal vessels and that the NOS inhibitor nitro-L-arginine blocked relaxations in both groups. Relaxations in 4-wk vessels were not blocked by an inhibitor of soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one, but were partially blocked by catalase. We therefore hypothesized that activation of eNOS produced reactive oxygen species in 4-wk but not fetal PA. To address this question, we studied NO and superoxide production by endothelial cells at baseline and following NOS stimulation with A-23187, VEGF, and laminar shear stress. Stimulation of NOS induced phosphorylation at serine 1177, and this event correlated with an increase in NO production in both ages. Upon stimulation of eNOS, fetal PA endothelial cells (PAEC) produced only NO. In contrast 4-wk-old PAEC produced superoxide in addition to NO. Superoxide production was blocked by L-NAME but not by apocynin (an NADPH oxidase inhibitor). L-Arginine increased NO production in both cell types but did not block superoxide production. Heat shock protein 90/eNOS association increased upon stimulation and did not change with developmental age. Cellular levels of total and reduced biopterin were higher in fetal vs. 4-wk cells. Sepiapterin [a tetrahydrobiopterin (BH4) precursor] increased basal and stimulated NO levels and completely blocked superoxide production. We conclude that the normal function of eNOS becomes uncoupled after birth, leading to a developmental adaptation of the pulmonary vascular system to produce oxygen species other than NO. We speculate this may be related to cellular production and/or maintenance of BH4 levels. [PUBLICATION ABSTRACT]
ISSN:1040-0605
1522-1504