Loading…
The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting
In this study, the effect of rhenium addition (2, 4, and 6 wt pct) and building orientation (0 and 90 deg) on the microstructure and corrosion resistance of Inconel 718 (IN718) alloy processed by selective laser melting (SLM) was investigated. Microstructure characterization showed that the as-built...
Saved in:
Published in: | Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6479-6489 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3 |
container_end_page | 6489 |
container_issue | 12 |
container_start_page | 6479 |
container_title | Metallurgical and materials transactions. A, Physical metallurgy and materials science |
container_volume | 49 |
creator | Majchrowicz, Kamil Pakieła, Zbigniew Kamiński, Janusz Płocińska, Magdalena Kurzynowski, Tomasz Chlebus, Edward |
description | In this study, the effect of rhenium addition (2, 4, and 6 wt pct) and building orientation (0 and 90 deg) on the microstructure and corrosion resistance of Inconel 718 (IN718) alloy processed by selective laser melting (SLM) was investigated. Microstructure characterization showed that the as-built IN718-Re alloys consist of columnar grains growing parallel to the building direction (
Z
-axis). Each columnar grain was characterized by a fine columnar/cellular dendritic substructure with Nb- and Mo-rich Laves phases and MC-type carbides embedded in the interdendritic spaces. Rhenium addition segregated to γ phase dendrites which resulted in an increase of the columnar/cellular substructures width with increasing Re content. Due to a strong microstructure anisotropy of SLM-processed IN718-Re alloys, the corrosion properties were examined for mutually perpendicular planes: XY (90 deg samples) and XZ (0 deg). The presence of rhenium enhanced the corrosion resistance of IN718 alloy in 0.1 M Na
2
SO
4
and NaCl solutions at both exposed planes. The corrosion current density was significantly reduced for IN718-Re alloys and increasing Re content correlated with a more positive shift in corrosion potential. Moreover, the XY plane possessed better corrosion resistance than the XZ plane due to the higher fraction of laser overlapping areas observed for the XZ plane. |
doi_str_mv | 10.1007/s11661-018-4926-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2110109085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110109085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3</originalsourceid><addsrcrecordid>eNp1UEtLAzEQXkTBWv0B3gKeVzPJPo-lVC20KLX3kGQn7ZZttia7Qg_-d7Os4EkYmGHmezBfFN0DfQRK8ycPkGUQUyjipGRZzC-iCaQJj6FM6GWYac7jNGP8Orrx_kAphZJnk-h7u0eyMAZ1R1pDNnu0dX8ks6qqu7q1JNS61q71net11zsk0lZk3rqwGu4b9LXvpNU40JdWtxYbkkNB3l2r0XusiDqTD2yCQ_2FZCU9OrLGpqvt7ja6MrLxePfbp9H2ebGdv8art5flfLaKNU_LLlbUgGSlzHLkmkmFqBJTQGWMMsyYTKm81FWSGsxZqSUmOeesypUqADlUfBo9jLIn13726DtxaHtng6NgABRoSYs0oGBEDe96h0acXH2U7iyAiiFkMYYsQshiCFnwwGEjxwes3aH7U_6f9AM8voFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110109085</pqid></control><display><type>article</type><title>The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Majchrowicz, Kamil ; Pakieła, Zbigniew ; Kamiński, Janusz ; Płocińska, Magdalena ; Kurzynowski, Tomasz ; Chlebus, Edward</creator><creatorcontrib>Majchrowicz, Kamil ; Pakieła, Zbigniew ; Kamiński, Janusz ; Płocińska, Magdalena ; Kurzynowski, Tomasz ; Chlebus, Edward</creatorcontrib><description>In this study, the effect of rhenium addition (2, 4, and 6 wt pct) and building orientation (0 and 90 deg) on the microstructure and corrosion resistance of Inconel 718 (IN718) alloy processed by selective laser melting (SLM) was investigated. Microstructure characterization showed that the as-built IN718-Re alloys consist of columnar grains growing parallel to the building direction (
Z
-axis). Each columnar grain was characterized by a fine columnar/cellular dendritic substructure with Nb- and Mo-rich Laves phases and MC-type carbides embedded in the interdendritic spaces. Rhenium addition segregated to γ phase dendrites which resulted in an increase of the columnar/cellular substructures width with increasing Re content. Due to a strong microstructure anisotropy of SLM-processed IN718-Re alloys, the corrosion properties were examined for mutually perpendicular planes: XY (90 deg samples) and XZ (0 deg). The presence of rhenium enhanced the corrosion resistance of IN718 alloy in 0.1 M Na
2
SO
4
and NaCl solutions at both exposed planes. The corrosion current density was significantly reduced for IN718-Re alloys and increasing Re content correlated with a more positive shift in corrosion potential. Moreover, the XY plane possessed better corrosion resistance than the XZ plane due to the higher fraction of laser overlapping areas observed for the XZ plane.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-018-4926-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Anisotropy ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion currents ; Corrosion effects ; Corrosion potential ; Corrosion resistance ; Corrosion resistant alloys ; Gamma phase ; Laser beam melting ; Lasers ; Laves phase ; Materials Science ; Metallic Materials ; Microstructure ; Molybdenum ; Nanotechnology ; Nickel base alloys ; Niobium ; Planes ; Rhenium ; Sodium chloride ; Sodium sulfate ; Structural Materials ; Substructures ; Superalloys ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6479-6489</ispartof><rights>The Author(s) 2018</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3</citedby><cites>FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Majchrowicz, Kamil</creatorcontrib><creatorcontrib>Pakieła, Zbigniew</creatorcontrib><creatorcontrib>Kamiński, Janusz</creatorcontrib><creatorcontrib>Płocińska, Magdalena</creatorcontrib><creatorcontrib>Kurzynowski, Tomasz</creatorcontrib><creatorcontrib>Chlebus, Edward</creatorcontrib><title>The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>In this study, the effect of rhenium addition (2, 4, and 6 wt pct) and building orientation (0 and 90 deg) on the microstructure and corrosion resistance of Inconel 718 (IN718) alloy processed by selective laser melting (SLM) was investigated. Microstructure characterization showed that the as-built IN718-Re alloys consist of columnar grains growing parallel to the building direction (
Z
-axis). Each columnar grain was characterized by a fine columnar/cellular dendritic substructure with Nb- and Mo-rich Laves phases and MC-type carbides embedded in the interdendritic spaces. Rhenium addition segregated to γ phase dendrites which resulted in an increase of the columnar/cellular substructures width with increasing Re content. Due to a strong microstructure anisotropy of SLM-processed IN718-Re alloys, the corrosion properties were examined for mutually perpendicular planes: XY (90 deg samples) and XZ (0 deg). The presence of rhenium enhanced the corrosion resistance of IN718 alloy in 0.1 M Na
2
SO
4
and NaCl solutions at both exposed planes. The corrosion current density was significantly reduced for IN718-Re alloys and increasing Re content correlated with a more positive shift in corrosion potential. Moreover, the XY plane possessed better corrosion resistance than the XZ plane due to the higher fraction of laser overlapping areas observed for the XZ plane.</description><subject>Alloys</subject><subject>Anisotropy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion currents</subject><subject>Corrosion effects</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Gamma phase</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Laves phase</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Molybdenum</subject><subject>Nanotechnology</subject><subject>Nickel base alloys</subject><subject>Niobium</subject><subject>Planes</subject><subject>Rhenium</subject><subject>Sodium chloride</subject><subject>Sodium sulfate</subject><subject>Structural Materials</subject><subject>Substructures</subject><subject>Superalloys</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQXkTBWv0B3gKeVzPJPo-lVC20KLX3kGQn7ZZttia7Qg_-d7Os4EkYmGHmezBfFN0DfQRK8ycPkGUQUyjipGRZzC-iCaQJj6FM6GWYac7jNGP8Orrx_kAphZJnk-h7u0eyMAZ1R1pDNnu0dX8ks6qqu7q1JNS61q71net11zsk0lZk3rqwGu4b9LXvpNU40JdWtxYbkkNB3l2r0XusiDqTD2yCQ_2FZCU9OrLGpqvt7ja6MrLxePfbp9H2ebGdv8art5flfLaKNU_LLlbUgGSlzHLkmkmFqBJTQGWMMsyYTKm81FWSGsxZqSUmOeesypUqADlUfBo9jLIn13726DtxaHtng6NgABRoSYs0oGBEDe96h0acXH2U7iyAiiFkMYYsQshiCFnwwGEjxwes3aH7U_6f9AM8voFU</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Majchrowicz, Kamil</creator><creator>Pakieła, Zbigniew</creator><creator>Kamiński, Janusz</creator><creator>Płocińska, Magdalena</creator><creator>Kurzynowski, Tomasz</creator><creator>Chlebus, Edward</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20181201</creationdate><title>The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting</title><author>Majchrowicz, Kamil ; Pakieła, Zbigniew ; Kamiński, Janusz ; Płocińska, Magdalena ; Kurzynowski, Tomasz ; Chlebus, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Anisotropy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion currents</topic><topic>Corrosion effects</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Gamma phase</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Laves phase</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Molybdenum</topic><topic>Nanotechnology</topic><topic>Nickel base alloys</topic><topic>Niobium</topic><topic>Planes</topic><topic>Rhenium</topic><topic>Sodium chloride</topic><topic>Sodium sulfate</topic><topic>Structural Materials</topic><topic>Substructures</topic><topic>Superalloys</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majchrowicz, Kamil</creatorcontrib><creatorcontrib>Pakieła, Zbigniew</creatorcontrib><creatorcontrib>Kamiński, Janusz</creatorcontrib><creatorcontrib>Płocińska, Magdalena</creatorcontrib><creatorcontrib>Kurzynowski, Tomasz</creatorcontrib><creatorcontrib>Chlebus, Edward</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majchrowicz, Kamil</au><au>Pakieła, Zbigniew</au><au>Kamiński, Janusz</au><au>Płocińska, Magdalena</au><au>Kurzynowski, Tomasz</au><au>Chlebus, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>49</volume><issue>12</issue><spage>6479</spage><epage>6489</epage><pages>6479-6489</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>In this study, the effect of rhenium addition (2, 4, and 6 wt pct) and building orientation (0 and 90 deg) on the microstructure and corrosion resistance of Inconel 718 (IN718) alloy processed by selective laser melting (SLM) was investigated. Microstructure characterization showed that the as-built IN718-Re alloys consist of columnar grains growing parallel to the building direction (
Z
-axis). Each columnar grain was characterized by a fine columnar/cellular dendritic substructure with Nb- and Mo-rich Laves phases and MC-type carbides embedded in the interdendritic spaces. Rhenium addition segregated to γ phase dendrites which resulted in an increase of the columnar/cellular substructures width with increasing Re content. Due to a strong microstructure anisotropy of SLM-processed IN718-Re alloys, the corrosion properties were examined for mutually perpendicular planes: XY (90 deg samples) and XZ (0 deg). The presence of rhenium enhanced the corrosion resistance of IN718 alloy in 0.1 M Na
2
SO
4
and NaCl solutions at both exposed planes. The corrosion current density was significantly reduced for IN718-Re alloys and increasing Re content correlated with a more positive shift in corrosion potential. Moreover, the XY plane possessed better corrosion resistance than the XZ plane due to the higher fraction of laser overlapping areas observed for the XZ plane.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-018-4926-3</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1073-5623 |
ispartof | Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6479-6489 |
issn | 1073-5623 1543-1940 |
language | eng |
recordid | cdi_proquest_journals_2110109085 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Alloys Anisotropy Characterization and Evaluation of Materials Chemistry and Materials Science Corrosion currents Corrosion effects Corrosion potential Corrosion resistance Corrosion resistant alloys Gamma phase Laser beam melting Lasers Laves phase Materials Science Metallic Materials Microstructure Molybdenum Nanotechnology Nickel base alloys Niobium Planes Rhenium Sodium chloride Sodium sulfate Structural Materials Substructures Superalloys Surfaces and Interfaces Thin Films |
title | The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Rhenium%20Addition%20on%20Microstructure%20and%20Corrosion%20Resistance%20of%20Inconel%20718%20Processed%20by%20Selective%20Laser%20Melting&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Majchrowicz,%20Kamil&rft.date=2018-12-01&rft.volume=49&rft.issue=12&rft.spage=6479&rft.epage=6489&rft.pages=6479-6489&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-018-4926-3&rft_dat=%3Cproquest_cross%3E2110109085%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2110109085&rft_id=info:pmid/&rfr_iscdi=true |