Loading…

The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting

In this study, the effect of rhenium addition (2, 4, and 6 wt pct) and building orientation (0 and 90 deg) on the microstructure and corrosion resistance of Inconel 718 (IN718) alloy processed by selective laser melting (SLM) was investigated. Microstructure characterization showed that the as-built...

Full description

Saved in:
Bibliographic Details
Published in:Metallurgical and materials transactions. A, Physical metallurgy and materials science Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6479-6489
Main Authors: Majchrowicz, Kamil, Pakieła, Zbigniew, Kamiński, Janusz, Płocińska, Magdalena, Kurzynowski, Tomasz, Chlebus, Edward
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3
cites cdi_FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3
container_end_page 6489
container_issue 12
container_start_page 6479
container_title Metallurgical and materials transactions. A, Physical metallurgy and materials science
container_volume 49
creator Majchrowicz, Kamil
Pakieła, Zbigniew
Kamiński, Janusz
Płocińska, Magdalena
Kurzynowski, Tomasz
Chlebus, Edward
description In this study, the effect of rhenium addition (2, 4, and 6 wt pct) and building orientation (0 and 90 deg) on the microstructure and corrosion resistance of Inconel 718 (IN718) alloy processed by selective laser melting (SLM) was investigated. Microstructure characterization showed that the as-built IN718-Re alloys consist of columnar grains growing parallel to the building direction ( Z -axis). Each columnar grain was characterized by a fine columnar/cellular dendritic substructure with Nb- and Mo-rich Laves phases and MC-type carbides embedded in the interdendritic spaces. Rhenium addition segregated to γ phase dendrites which resulted in an increase of the columnar/cellular substructures width with increasing Re content. Due to a strong microstructure anisotropy of SLM-processed IN718-Re alloys, the corrosion properties were examined for mutually perpendicular planes: XY (90 deg samples) and XZ (0 deg). The presence of rhenium enhanced the corrosion resistance of IN718 alloy in 0.1 M Na 2 SO 4 and NaCl solutions at both exposed planes. The corrosion current density was significantly reduced for IN718-Re alloys and increasing Re content correlated with a more positive shift in corrosion potential. Moreover, the XY plane possessed better corrosion resistance than the XZ plane due to the higher fraction of laser overlapping areas observed for the XZ plane.
doi_str_mv 10.1007/s11661-018-4926-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2110109085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2110109085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3</originalsourceid><addsrcrecordid>eNp1UEtLAzEQXkTBWv0B3gKeVzPJPo-lVC20KLX3kGQn7ZZttia7Qg_-d7Os4EkYmGHmezBfFN0DfQRK8ycPkGUQUyjipGRZzC-iCaQJj6FM6GWYac7jNGP8Orrx_kAphZJnk-h7u0eyMAZ1R1pDNnu0dX8ks6qqu7q1JNS61q71net11zsk0lZk3rqwGu4b9LXvpNU40JdWtxYbkkNB3l2r0XusiDqTD2yCQ_2FZCU9OrLGpqvt7ja6MrLxePfbp9H2ebGdv8art5flfLaKNU_LLlbUgGSlzHLkmkmFqBJTQGWMMsyYTKm81FWSGsxZqSUmOeesypUqADlUfBo9jLIn13726DtxaHtng6NgABRoSYs0oGBEDe96h0acXH2U7iyAiiFkMYYsQshiCFnwwGEjxwes3aH7U_6f9AM8voFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110109085</pqid></control><display><type>article</type><title>The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Majchrowicz, Kamil ; Pakieła, Zbigniew ; Kamiński, Janusz ; Płocińska, Magdalena ; Kurzynowski, Tomasz ; Chlebus, Edward</creator><creatorcontrib>Majchrowicz, Kamil ; Pakieła, Zbigniew ; Kamiński, Janusz ; Płocińska, Magdalena ; Kurzynowski, Tomasz ; Chlebus, Edward</creatorcontrib><description>In this study, the effect of rhenium addition (2, 4, and 6 wt pct) and building orientation (0 and 90 deg) on the microstructure and corrosion resistance of Inconel 718 (IN718) alloy processed by selective laser melting (SLM) was investigated. Microstructure characterization showed that the as-built IN718-Re alloys consist of columnar grains growing parallel to the building direction ( Z -axis). Each columnar grain was characterized by a fine columnar/cellular dendritic substructure with Nb- and Mo-rich Laves phases and MC-type carbides embedded in the interdendritic spaces. Rhenium addition segregated to γ phase dendrites which resulted in an increase of the columnar/cellular substructures width with increasing Re content. Due to a strong microstructure anisotropy of SLM-processed IN718-Re alloys, the corrosion properties were examined for mutually perpendicular planes: XY (90 deg samples) and XZ (0 deg). The presence of rhenium enhanced the corrosion resistance of IN718 alloy in 0.1 M Na 2 SO 4 and NaCl solutions at both exposed planes. The corrosion current density was significantly reduced for IN718-Re alloys and increasing Re content correlated with a more positive shift in corrosion potential. Moreover, the XY plane possessed better corrosion resistance than the XZ plane due to the higher fraction of laser overlapping areas observed for the XZ plane.</description><identifier>ISSN: 1073-5623</identifier><identifier>EISSN: 1543-1940</identifier><identifier>DOI: 10.1007/s11661-018-4926-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Anisotropy ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Corrosion currents ; Corrosion effects ; Corrosion potential ; Corrosion resistance ; Corrosion resistant alloys ; Gamma phase ; Laser beam melting ; Lasers ; Laves phase ; Materials Science ; Metallic Materials ; Microstructure ; Molybdenum ; Nanotechnology ; Nickel base alloys ; Niobium ; Planes ; Rhenium ; Sodium chloride ; Sodium sulfate ; Structural Materials ; Substructures ; Superalloys ; Surfaces and Interfaces ; Thin Films</subject><ispartof>Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6479-6489</ispartof><rights>The Author(s) 2018</rights><rights>Metallurgical and Materials Transactions A is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3</citedby><cites>FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Majchrowicz, Kamil</creatorcontrib><creatorcontrib>Pakieła, Zbigniew</creatorcontrib><creatorcontrib>Kamiński, Janusz</creatorcontrib><creatorcontrib>Płocińska, Magdalena</creatorcontrib><creatorcontrib>Kurzynowski, Tomasz</creatorcontrib><creatorcontrib>Chlebus, Edward</creatorcontrib><title>The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting</title><title>Metallurgical and materials transactions. A, Physical metallurgy and materials science</title><addtitle>Metall Mater Trans A</addtitle><description>In this study, the effect of rhenium addition (2, 4, and 6 wt pct) and building orientation (0 and 90 deg) on the microstructure and corrosion resistance of Inconel 718 (IN718) alloy processed by selective laser melting (SLM) was investigated. Microstructure characterization showed that the as-built IN718-Re alloys consist of columnar grains growing parallel to the building direction ( Z -axis). Each columnar grain was characterized by a fine columnar/cellular dendritic substructure with Nb- and Mo-rich Laves phases and MC-type carbides embedded in the interdendritic spaces. Rhenium addition segregated to γ phase dendrites which resulted in an increase of the columnar/cellular substructures width with increasing Re content. Due to a strong microstructure anisotropy of SLM-processed IN718-Re alloys, the corrosion properties were examined for mutually perpendicular planes: XY (90 deg samples) and XZ (0 deg). The presence of rhenium enhanced the corrosion resistance of IN718 alloy in 0.1 M Na 2 SO 4 and NaCl solutions at both exposed planes. The corrosion current density was significantly reduced for IN718-Re alloys and increasing Re content correlated with a more positive shift in corrosion potential. Moreover, the XY plane possessed better corrosion resistance than the XZ plane due to the higher fraction of laser overlapping areas observed for the XZ plane.</description><subject>Alloys</subject><subject>Anisotropy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Corrosion currents</subject><subject>Corrosion effects</subject><subject>Corrosion potential</subject><subject>Corrosion resistance</subject><subject>Corrosion resistant alloys</subject><subject>Gamma phase</subject><subject>Laser beam melting</subject><subject>Lasers</subject><subject>Laves phase</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Molybdenum</subject><subject>Nanotechnology</subject><subject>Nickel base alloys</subject><subject>Niobium</subject><subject>Planes</subject><subject>Rhenium</subject><subject>Sodium chloride</subject><subject>Sodium sulfate</subject><subject>Structural Materials</subject><subject>Substructures</subject><subject>Superalloys</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><issn>1073-5623</issn><issn>1543-1940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQXkTBWv0B3gKeVzPJPo-lVC20KLX3kGQn7ZZttia7Qg_-d7Os4EkYmGHmezBfFN0DfQRK8ycPkGUQUyjipGRZzC-iCaQJj6FM6GWYac7jNGP8Orrx_kAphZJnk-h7u0eyMAZ1R1pDNnu0dX8ks6qqu7q1JNS61q71net11zsk0lZk3rqwGu4b9LXvpNU40JdWtxYbkkNB3l2r0XusiDqTD2yCQ_2FZCU9OrLGpqvt7ja6MrLxePfbp9H2ebGdv8art5flfLaKNU_LLlbUgGSlzHLkmkmFqBJTQGWMMsyYTKm81FWSGsxZqSUmOeesypUqADlUfBo9jLIn13726DtxaHtng6NgABRoSYs0oGBEDe96h0acXH2U7iyAiiFkMYYsQshiCFnwwGEjxwes3aH7U_6f9AM8voFU</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Majchrowicz, Kamil</creator><creator>Pakieła, Zbigniew</creator><creator>Kamiński, Janusz</creator><creator>Płocińska, Magdalena</creator><creator>Kurzynowski, Tomasz</creator><creator>Chlebus, Edward</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20181201</creationdate><title>The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting</title><author>Majchrowicz, Kamil ; Pakieła, Zbigniew ; Kamiński, Janusz ; Płocińska, Magdalena ; Kurzynowski, Tomasz ; Chlebus, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alloys</topic><topic>Anisotropy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Corrosion currents</topic><topic>Corrosion effects</topic><topic>Corrosion potential</topic><topic>Corrosion resistance</topic><topic>Corrosion resistant alloys</topic><topic>Gamma phase</topic><topic>Laser beam melting</topic><topic>Lasers</topic><topic>Laves phase</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Molybdenum</topic><topic>Nanotechnology</topic><topic>Nickel base alloys</topic><topic>Niobium</topic><topic>Planes</topic><topic>Rhenium</topic><topic>Sodium chloride</topic><topic>Sodium sulfate</topic><topic>Structural Materials</topic><topic>Substructures</topic><topic>Superalloys</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majchrowicz, Kamil</creatorcontrib><creatorcontrib>Pakieła, Zbigniew</creatorcontrib><creatorcontrib>Kamiński, Janusz</creatorcontrib><creatorcontrib>Płocińska, Magdalena</creatorcontrib><creatorcontrib>Kurzynowski, Tomasz</creatorcontrib><creatorcontrib>Chlebus, Edward</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majchrowicz, Kamil</au><au>Pakieła, Zbigniew</au><au>Kamiński, Janusz</au><au>Płocińska, Magdalena</au><au>Kurzynowski, Tomasz</au><au>Chlebus, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting</atitle><jtitle>Metallurgical and materials transactions. A, Physical metallurgy and materials science</jtitle><stitle>Metall Mater Trans A</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>49</volume><issue>12</issue><spage>6479</spage><epage>6489</epage><pages>6479-6489</pages><issn>1073-5623</issn><eissn>1543-1940</eissn><abstract>In this study, the effect of rhenium addition (2, 4, and 6 wt pct) and building orientation (0 and 90 deg) on the microstructure and corrosion resistance of Inconel 718 (IN718) alloy processed by selective laser melting (SLM) was investigated. Microstructure characterization showed that the as-built IN718-Re alloys consist of columnar grains growing parallel to the building direction ( Z -axis). Each columnar grain was characterized by a fine columnar/cellular dendritic substructure with Nb- and Mo-rich Laves phases and MC-type carbides embedded in the interdendritic spaces. Rhenium addition segregated to γ phase dendrites which resulted in an increase of the columnar/cellular substructures width with increasing Re content. Due to a strong microstructure anisotropy of SLM-processed IN718-Re alloys, the corrosion properties were examined for mutually perpendicular planes: XY (90 deg samples) and XZ (0 deg). The presence of rhenium enhanced the corrosion resistance of IN718 alloy in 0.1 M Na 2 SO 4 and NaCl solutions at both exposed planes. The corrosion current density was significantly reduced for IN718-Re alloys and increasing Re content correlated with a more positive shift in corrosion potential. Moreover, the XY plane possessed better corrosion resistance than the XZ plane due to the higher fraction of laser overlapping areas observed for the XZ plane.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11661-018-4926-3</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1073-5623
ispartof Metallurgical and materials transactions. A, Physical metallurgy and materials science, 2018-12, Vol.49 (12), p.6479-6489
issn 1073-5623
1543-1940
language eng
recordid cdi_proquest_journals_2110109085
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Alloys
Anisotropy
Characterization and Evaluation of Materials
Chemistry and Materials Science
Corrosion currents
Corrosion effects
Corrosion potential
Corrosion resistance
Corrosion resistant alloys
Gamma phase
Laser beam melting
Lasers
Laves phase
Materials Science
Metallic Materials
Microstructure
Molybdenum
Nanotechnology
Nickel base alloys
Niobium
Planes
Rhenium
Sodium chloride
Sodium sulfate
Structural Materials
Substructures
Superalloys
Surfaces and Interfaces
Thin Films
title The Effect of Rhenium Addition on Microstructure and Corrosion Resistance of Inconel 718 Processed by Selective Laser Melting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A28%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Rhenium%20Addition%20on%20Microstructure%20and%20Corrosion%20Resistance%20of%20Inconel%20718%20Processed%20by%20Selective%20Laser%20Melting&rft.jtitle=Metallurgical%20and%20materials%20transactions.%20A,%20Physical%20metallurgy%20and%20materials%20science&rft.au=Majchrowicz,%20Kamil&rft.date=2018-12-01&rft.volume=49&rft.issue=12&rft.spage=6479&rft.epage=6489&rft.pages=6479-6489&rft.issn=1073-5623&rft.eissn=1543-1940&rft_id=info:doi/10.1007/s11661-018-4926-3&rft_dat=%3Cproquest_cross%3E2110109085%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-b0f1a29a67e3c2abeeb4f81dffbf2ff6bb79cd45fe729cae47332d7bb81e31d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2110109085&rft_id=info:pmid/&rfr_iscdi=true