Loading…

Provenance of Jurassic-Cretaceous siliciclastic rocks from the northern Siberian Craton: an integrated heavy mineral study

The U-Pb ages of detrital zircons and the chemical compositions of detrital gamets and tourmalines from Jurassic-Cretaceous sedimentary rocks of the northern part of the Priverkhoyansk Foreland Basin, the central part of the Yenisey-Khatanga Depression, and the northern part of the Taimyr-Severnaya...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geosciences (Prague) 2018-01, Vol.63 (2), p.199-213
Main Authors: Vereshchagin, O.S., Khudoley, A.K., Ershova, V.B., Prokopiev, A.V., Schneider, G.V.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a321t-3971508895b007ed08c0536e6d5e8234e4aefdaf8e1ec00b846093fb383248423
cites
container_end_page 213
container_issue 2
container_start_page 199
container_title Journal of geosciences (Prague)
container_volume 63
creator Vereshchagin, O.S.
Khudoley, A.K.
Ershova, V.B.
Prokopiev, A.V.
Schneider, G.V.
description The U-Pb ages of detrital zircons and the chemical compositions of detrital gamets and tourmalines from Jurassic-Cretaceous sedimentary rocks of the northern part of the Priverkhoyansk Foreland Basin, the central part of the Yenisey-Khatanga Depression, and the northern part of the Taimyr-Severnaya Zemlya Fold and Thrust Belt were used for a provenance study. Detrital zircons display two age populations, dominated by Late Paleozoic and Paleoproterozoic-Archean zircons, respectively. The first population was recognized in all samples, whereas the second is restricted to Cretaceous samples, suggesting that erosion of the Siberian Craton basement was the main source of clastic sediments only during the Cretaceous. The chemical compositions of the garnets also indicate several sources of detrital material, which changed with time. There are significant differences in the composition of Jurassic (grossular-almandine) and Cretaceous (mainly pyrope) garnets. The pyrope association is characteristic of the high-grade metamorphic rocks of the Siberian Craton, which correlates well with our zircon data. The chemical composition of tourmaline grains varies widely and does not show significant differences between samples of different ages, therefore could not be used to discriminate between different provenance areas in this study.
doi_str_mv 10.3190/jgeosci.264
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111088770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111088770</sourcerecordid><originalsourceid>FETCH-LOGICAL-a321t-3971508895b007ed08c0536e6d5e8234e4aefdaf8e1ec00b846093fb383248423</originalsourceid><addsrcrecordid>eNotkF1LwzAUhoMoOOau_AMBL6UzX21T76T4yUBBvS5perpldslM0sH89Ua3q_c98PAeeBC6pGTOaUVu1ktwQZs5K8QJmlBJeEYrwU__O8sKxtg5moVgWsKKvCpKUU7Qz5t3O7DKasCuxy-jV4nQWe0hKg1uDDiYwWijBxWi0dg7_RVw790GxxVg63wKb_G7acEbZXHtVXT2FqdqbIRlOqHDK1C7Pd4YC14NOMSx21-gs14NAWbHnKLPh_uP-ilbvD4-13eLTHFGY8arkuZEyipvCSmhI1KTnBdQdDlIxgUIBX2negkUNCGtFAWpeN9yyZmQgvEpujrsbr37HiHEZu1Gb9PLhlFK03RZkkRdHyjtXQge-mbrzUb5fUNJ8-e3Ofptkl_-CxRrcLU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111088770</pqid></control><display><type>article</type><title>Provenance of Jurassic-Cretaceous siliciclastic rocks from the northern Siberian Craton: an integrated heavy mineral study</title><source>Free Full-Text Journals in Chemistry</source><creator>Vereshchagin, O.S. ; Khudoley, A.K. ; Ershova, V.B. ; Prokopiev, A.V. ; Schneider, G.V.</creator><creatorcontrib>Vereshchagin, O.S. ; Khudoley, A.K. ; Ershova, V.B. ; Prokopiev, A.V. ; Schneider, G.V.</creatorcontrib><description>The U-Pb ages of detrital zircons and the chemical compositions of detrital gamets and tourmalines from Jurassic-Cretaceous sedimentary rocks of the northern part of the Priverkhoyansk Foreland Basin, the central part of the Yenisey-Khatanga Depression, and the northern part of the Taimyr-Severnaya Zemlya Fold and Thrust Belt were used for a provenance study. Detrital zircons display two age populations, dominated by Late Paleozoic and Paleoproterozoic-Archean zircons, respectively. The first population was recognized in all samples, whereas the second is restricted to Cretaceous samples, suggesting that erosion of the Siberian Craton basement was the main source of clastic sediments only during the Cretaceous. The chemical compositions of the garnets also indicate several sources of detrital material, which changed with time. There are significant differences in the composition of Jurassic (grossular-almandine) and Cretaceous (mainly pyrope) garnets. The pyrope association is characteristic of the high-grade metamorphic rocks of the Siberian Craton, which correlates well with our zircon data. The chemical composition of tourmaline grains varies widely and does not show significant differences between samples of different ages, therefore could not be used to discriminate between different provenance areas in this study.</description><identifier>ISSN: 1802-6222</identifier><identifier>EISSN: 1803-1943</identifier><identifier>DOI: 10.3190/jgeosci.264</identifier><language>eng</language><publisher>Prague: Czech Geological Society</publisher><subject>Age ; Chemical composition ; Cratons ; Cretaceous ; Erosion ; Garnets ; Geochronometry ; Geologic depressions ; Geological time ; Geology ; Isotopes ; Jurassic ; Magnesium aluminum silicates ; Metamorphic rocks ; Minerals ; Organic chemistry ; Paleozoic ; Provenance ; Radiometric dating ; Sedimentary rocks ; Sediments ; Stone ; Studies ; Tourmaline ; Uranium ; Zircon</subject><ispartof>Journal of geosciences (Prague), 2018-01, Vol.63 (2), p.199-213</ispartof><rights>Copyright Czech Geological Society 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a321t-3971508895b007ed08c0536e6d5e8234e4aefdaf8e1ec00b846093fb383248423</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Vereshchagin, O.S.</creatorcontrib><creatorcontrib>Khudoley, A.K.</creatorcontrib><creatorcontrib>Ershova, V.B.</creatorcontrib><creatorcontrib>Prokopiev, A.V.</creatorcontrib><creatorcontrib>Schneider, G.V.</creatorcontrib><title>Provenance of Jurassic-Cretaceous siliciclastic rocks from the northern Siberian Craton: an integrated heavy mineral study</title><title>Journal of geosciences (Prague)</title><description>The U-Pb ages of detrital zircons and the chemical compositions of detrital gamets and tourmalines from Jurassic-Cretaceous sedimentary rocks of the northern part of the Priverkhoyansk Foreland Basin, the central part of the Yenisey-Khatanga Depression, and the northern part of the Taimyr-Severnaya Zemlya Fold and Thrust Belt were used for a provenance study. Detrital zircons display two age populations, dominated by Late Paleozoic and Paleoproterozoic-Archean zircons, respectively. The first population was recognized in all samples, whereas the second is restricted to Cretaceous samples, suggesting that erosion of the Siberian Craton basement was the main source of clastic sediments only during the Cretaceous. The chemical compositions of the garnets also indicate several sources of detrital material, which changed with time. There are significant differences in the composition of Jurassic (grossular-almandine) and Cretaceous (mainly pyrope) garnets. The pyrope association is characteristic of the high-grade metamorphic rocks of the Siberian Craton, which correlates well with our zircon data. The chemical composition of tourmaline grains varies widely and does not show significant differences between samples of different ages, therefore could not be used to discriminate between different provenance areas in this study.</description><subject>Age</subject><subject>Chemical composition</subject><subject>Cratons</subject><subject>Cretaceous</subject><subject>Erosion</subject><subject>Garnets</subject><subject>Geochronometry</subject><subject>Geologic depressions</subject><subject>Geological time</subject><subject>Geology</subject><subject>Isotopes</subject><subject>Jurassic</subject><subject>Magnesium aluminum silicates</subject><subject>Metamorphic rocks</subject><subject>Minerals</subject><subject>Organic chemistry</subject><subject>Paleozoic</subject><subject>Provenance</subject><subject>Radiometric dating</subject><subject>Sedimentary rocks</subject><subject>Sediments</subject><subject>Stone</subject><subject>Studies</subject><subject>Tourmaline</subject><subject>Uranium</subject><subject>Zircon</subject><issn>1802-6222</issn><issn>1803-1943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotkF1LwzAUhoMoOOau_AMBL6UzX21T76T4yUBBvS5perpldslM0sH89Ua3q_c98PAeeBC6pGTOaUVu1ktwQZs5K8QJmlBJeEYrwU__O8sKxtg5moVgWsKKvCpKUU7Qz5t3O7DKasCuxy-jV4nQWe0hKg1uDDiYwWijBxWi0dg7_RVw790GxxVg63wKb_G7acEbZXHtVXT2FqdqbIRlOqHDK1C7Pd4YC14NOMSx21-gs14NAWbHnKLPh_uP-ilbvD4-13eLTHFGY8arkuZEyipvCSmhI1KTnBdQdDlIxgUIBX2negkUNCGtFAWpeN9yyZmQgvEpujrsbr37HiHEZu1Gb9PLhlFK03RZkkRdHyjtXQge-mbrzUb5fUNJ8-e3Ofptkl_-CxRrcLU</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Vereshchagin, O.S.</creator><creator>Khudoley, A.K.</creator><creator>Ershova, V.B.</creator><creator>Prokopiev, A.V.</creator><creator>Schneider, G.V.</creator><general>Czech Geological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>BYOGL</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180101</creationdate><title>Provenance of Jurassic-Cretaceous siliciclastic rocks from the northern Siberian Craton: an integrated heavy mineral study</title><author>Vereshchagin, O.S. ; Khudoley, A.K. ; Ershova, V.B. ; Prokopiev, A.V. ; Schneider, G.V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a321t-3971508895b007ed08c0536e6d5e8234e4aefdaf8e1ec00b846093fb383248423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Age</topic><topic>Chemical composition</topic><topic>Cratons</topic><topic>Cretaceous</topic><topic>Erosion</topic><topic>Garnets</topic><topic>Geochronometry</topic><topic>Geologic depressions</topic><topic>Geological time</topic><topic>Geology</topic><topic>Isotopes</topic><topic>Jurassic</topic><topic>Magnesium aluminum silicates</topic><topic>Metamorphic rocks</topic><topic>Minerals</topic><topic>Organic chemistry</topic><topic>Paleozoic</topic><topic>Provenance</topic><topic>Radiometric dating</topic><topic>Sedimentary rocks</topic><topic>Sediments</topic><topic>Stone</topic><topic>Studies</topic><topic>Tourmaline</topic><topic>Uranium</topic><topic>Zircon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vereshchagin, O.S.</creatorcontrib><creatorcontrib>Khudoley, A.K.</creatorcontrib><creatorcontrib>Ershova, V.B.</creatorcontrib><creatorcontrib>Prokopiev, A.V.</creatorcontrib><creatorcontrib>Schneider, G.V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of geosciences (Prague)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vereshchagin, O.S.</au><au>Khudoley, A.K.</au><au>Ershova, V.B.</au><au>Prokopiev, A.V.</au><au>Schneider, G.V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Provenance of Jurassic-Cretaceous siliciclastic rocks from the northern Siberian Craton: an integrated heavy mineral study</atitle><jtitle>Journal of geosciences (Prague)</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>63</volume><issue>2</issue><spage>199</spage><epage>213</epage><pages>199-213</pages><issn>1802-6222</issn><eissn>1803-1943</eissn><abstract>The U-Pb ages of detrital zircons and the chemical compositions of detrital gamets and tourmalines from Jurassic-Cretaceous sedimentary rocks of the northern part of the Priverkhoyansk Foreland Basin, the central part of the Yenisey-Khatanga Depression, and the northern part of the Taimyr-Severnaya Zemlya Fold and Thrust Belt were used for a provenance study. Detrital zircons display two age populations, dominated by Late Paleozoic and Paleoproterozoic-Archean zircons, respectively. The first population was recognized in all samples, whereas the second is restricted to Cretaceous samples, suggesting that erosion of the Siberian Craton basement was the main source of clastic sediments only during the Cretaceous. The chemical compositions of the garnets also indicate several sources of detrital material, which changed with time. There are significant differences in the composition of Jurassic (grossular-almandine) and Cretaceous (mainly pyrope) garnets. The pyrope association is characteristic of the high-grade metamorphic rocks of the Siberian Craton, which correlates well with our zircon data. The chemical composition of tourmaline grains varies widely and does not show significant differences between samples of different ages, therefore could not be used to discriminate between different provenance areas in this study.</abstract><cop>Prague</cop><pub>Czech Geological Society</pub><doi>10.3190/jgeosci.264</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1802-6222
ispartof Journal of geosciences (Prague), 2018-01, Vol.63 (2), p.199-213
issn 1802-6222
1803-1943
language eng
recordid cdi_proquest_journals_2111088770
source Free Full-Text Journals in Chemistry
subjects Age
Chemical composition
Cratons
Cretaceous
Erosion
Garnets
Geochronometry
Geologic depressions
Geological time
Geology
Isotopes
Jurassic
Magnesium aluminum silicates
Metamorphic rocks
Minerals
Organic chemistry
Paleozoic
Provenance
Radiometric dating
Sedimentary rocks
Sediments
Stone
Studies
Tourmaline
Uranium
Zircon
title Provenance of Jurassic-Cretaceous siliciclastic rocks from the northern Siberian Craton: an integrated heavy mineral study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A57%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Provenance%20of%20Jurassic-Cretaceous%20siliciclastic%20rocks%20from%20the%20northern%20Siberian%20Craton:%20an%20integrated%20heavy%20mineral%20study&rft.jtitle=Journal%20of%20geosciences%20(Prague)&rft.au=Vereshchagin,%20O.S.&rft.date=2018-01-01&rft.volume=63&rft.issue=2&rft.spage=199&rft.epage=213&rft.pages=199-213&rft.issn=1802-6222&rft.eissn=1803-1943&rft_id=info:doi/10.3190/jgeosci.264&rft_dat=%3Cproquest_cross%3E2111088770%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a321t-3971508895b007ed08c0536e6d5e8234e4aefdaf8e1ec00b846093fb383248423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111088770&rft_id=info:pmid/&rfr_iscdi=true