Loading…

A Hybrid Evolutionary Approach to Design Off-Grid Electrification Projects with Distributed Generation

A hybrid evolutionary approach is proposed to design off-grid electrification projects that require distributed generation (DG). The design of this type of systems can be considered as an NP-Hard combinatorial optimization problem; therefore, due to its complexity, the approach tackles the problem f...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-12
Main Authors: Avilés, J., Micheloud, O., Mayo-Maldonado, Jonathan C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A hybrid evolutionary approach is proposed to design off-grid electrification projects that require distributed generation (DG). The design of this type of systems can be considered as an NP-Hard combinatorial optimization problem; therefore, due to its complexity, the approach tackles the problem from two fronts: optimal network configuration and optimal placement of DG. The hybrid scheme is based on a particle swarm optimization technique (PSO) and a genetic algorithm (GA) improved with a heuristic mutation operator. The GA-PSO scheme permits finding the optimal network topology, the optimal number, and capacity of the generation units, as well as their best location. Furthermore, the algorithm must design the system under power quality requirements, network radiality, and geographical constraints. The approach uses GPS coordinates as input data and develops a network topology from scratch, driven by overall costs and power losses minimization. Finally, the proposed algorithm is described in detail and real applications are discussed, from which satisfactory results were obtained.
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/9135842