Loading…

On the Commutativity of a Prime ∗-Ring with a ∗-α-Derivation

Let R be a prime ∗-ring where ∗ be an involution of R, α be an automorphism of R, T be a nonzero left α-∗-centralizer on R and d be a nonzero ∗-α-derivation on R. The aim of this paper is to prove the commutativity of a ∗-ring R with the followings conditions: i) if T is a homomorphism (or an antiho...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific perspectives 2018-07, Vol.2 (3), p.51
Main Authors: BOSNALI, Gülay, AYDIN, Neşet, TÜRKMEN, Selin
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page 51
container_title Journal of scientific perspectives
container_volume 2
creator BOSNALI, Gülay
AYDIN, Neşet
TÜRKMEN, Selin
description Let R be a prime ∗-ring where ∗ be an involution of R, α be an automorphism of R, T be a nonzero left α-∗-centralizer on R and d be a nonzero ∗-α-derivation on R. The aim of this paper is to prove the commutativity of a ∗-ring R with the followings conditions: i) if T is a homomorphism (or an antihomomorphism) on R,ii) if d([x, y]) = 0 for all x, y ∈ R, iii) if [d(x), y] = [α(x), y] for all x, y ∈ R, iv) if d(x) ◦ y = 0 for all x, y ∈ R, v) if d(x ◦ y) = 0 for all x, y ∈ R.
doi_str_mv 10.26900/jsp.2018342244
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2111128065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111128065</sourcerecordid><originalsourceid>FETCH-LOGICAL-c685-f1d353abdff673f425c249797aef53e24e66706ba070fab1665c8a30bfffd74a3</originalsourceid><addsrcrecordid>eNotjU1Kw0AcxQdBsNSu3Q64nvrPfz6zLPGrUGiR7sskmbETTFKTScUbeAPP4UU8hCcxYt_m8X483iPkKoE5qhTgpuoPc4TEcIEoxBmZoDSacQBzQWZ9XwEApgql0hOyWDc07h3N2roeoo3hGOI7bT21dNOF2tGfj0_2FJpn-hbifqR_-fuL3bouHMd621ySc29fejc7-ZRs7--22SNbrR-W2WLFCmUk80nJJbd56b3S3AuUBYpUp9o6L7lD4ZTSoHILGrzNE6VkYSyH3HtfamH5lFz_zx669nVwfdxV7dA14-MOk1FoQEn-C8GbS-4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111128065</pqid></control><display><type>article</type><title>On the Commutativity of a Prime ∗-Ring with a ∗-α-Derivation</title><source>Publicly Available Content (ProQuest)</source><creator>BOSNALI, Gülay ; AYDIN, Neşet ; TÜRKMEN, Selin</creator><creatorcontrib>BOSNALI, Gülay ; AYDIN, Neşet ; TÜRKMEN, Selin</creatorcontrib><description>Let R be a prime ∗-ring where ∗ be an involution of R, α be an automorphism of R, T be a nonzero left α-∗-centralizer on R and d be a nonzero ∗-α-derivation on R. The aim of this paper is to prove the commutativity of a ∗-ring R with the followings conditions: i) if T is a homomorphism (or an antihomomorphism) on R,ii) if d([x, y]) = 0 for all x, y ∈ R, iii) if [d(x), y] = [α(x), y] for all x, y ∈ R, iv) if d(x) ◦ y = 0 for all x, y ∈ R, v) if d(x ◦ y) = 0 for all x, y ∈ R.</description><identifier>EISSN: 2587-3008</identifier><identifier>DOI: 10.26900/jsp.2018342244</identifier><language>eng</language><publisher>Canakkale: Holistence Publications</publisher><ispartof>Journal of scientific perspectives, 2018-07, Vol.2 (3), p.51</ispartof><rights>2018. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at http://www.ratingacademy.com.tr/ojs/index.php/jsp/publicationpolicies.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2111128065?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25733,27903,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>BOSNALI, Gülay</creatorcontrib><creatorcontrib>AYDIN, Neşet</creatorcontrib><creatorcontrib>TÜRKMEN, Selin</creatorcontrib><title>On the Commutativity of a Prime ∗-Ring with a ∗-α-Derivation</title><title>Journal of scientific perspectives</title><description>Let R be a prime ∗-ring where ∗ be an involution of R, α be an automorphism of R, T be a nonzero left α-∗-centralizer on R and d be a nonzero ∗-α-derivation on R. The aim of this paper is to prove the commutativity of a ∗-ring R with the followings conditions: i) if T is a homomorphism (or an antihomomorphism) on R,ii) if d([x, y]) = 0 for all x, y ∈ R, iii) if [d(x), y] = [α(x), y] for all x, y ∈ R, iv) if d(x) ◦ y = 0 for all x, y ∈ R, v) if d(x ◦ y) = 0 for all x, y ∈ R.</description><issn>2587-3008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjU1Kw0AcxQdBsNSu3Q64nvrPfz6zLPGrUGiR7sskmbETTFKTScUbeAPP4UU8hCcxYt_m8X483iPkKoE5qhTgpuoPc4TEcIEoxBmZoDSacQBzQWZ9XwEApgql0hOyWDc07h3N2roeoo3hGOI7bT21dNOF2tGfj0_2FJpn-hbifqR_-fuL3bouHMd621ySc29fejc7-ZRs7--22SNbrR-W2WLFCmUk80nJJbd56b3S3AuUBYpUp9o6L7lD4ZTSoHILGrzNE6VkYSyH3HtfamH5lFz_zx669nVwfdxV7dA14-MOk1FoQEn-C8GbS-4</recordid><startdate>20180731</startdate><enddate>20180731</enddate><creator>BOSNALI, Gülay</creator><creator>AYDIN, Neşet</creator><creator>TÜRKMEN, Selin</creator><general>Holistence Publications</general><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20180731</creationdate><title>On the Commutativity of a Prime ∗-Ring with a ∗-α-Derivation</title><author>BOSNALI, Gülay ; AYDIN, Neşet ; TÜRKMEN, Selin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c685-f1d353abdff673f425c249797aef53e24e66706ba070fab1665c8a30bfffd74a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>online_resources</toplevel><creatorcontrib>BOSNALI, Gülay</creatorcontrib><creatorcontrib>AYDIN, Neşet</creatorcontrib><creatorcontrib>TÜRKMEN, Selin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Turkey Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of scientific perspectives</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOSNALI, Gülay</au><au>AYDIN, Neşet</au><au>TÜRKMEN, Selin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Commutativity of a Prime ∗-Ring with a ∗-α-Derivation</atitle><jtitle>Journal of scientific perspectives</jtitle><date>2018-07-31</date><risdate>2018</risdate><volume>2</volume><issue>3</issue><spage>51</spage><pages>51-</pages><eissn>2587-3008</eissn><abstract>Let R be a prime ∗-ring where ∗ be an involution of R, α be an automorphism of R, T be a nonzero left α-∗-centralizer on R and d be a nonzero ∗-α-derivation on R. The aim of this paper is to prove the commutativity of a ∗-ring R with the followings conditions: i) if T is a homomorphism (or an antihomomorphism) on R,ii) if d([x, y]) = 0 for all x, y ∈ R, iii) if [d(x), y] = [α(x), y] for all x, y ∈ R, iv) if d(x) ◦ y = 0 for all x, y ∈ R, v) if d(x ◦ y) = 0 for all x, y ∈ R.</abstract><cop>Canakkale</cop><pub>Holistence Publications</pub><doi>10.26900/jsp.2018342244</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2587-3008
ispartof Journal of scientific perspectives, 2018-07, Vol.2 (3), p.51
issn 2587-3008
language eng
recordid cdi_proquest_journals_2111128065
source Publicly Available Content (ProQuest)
title On the Commutativity of a Prime ∗-Ring with a ∗-α-Derivation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A09%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Commutativity%20of%20a%20Prime%20%E2%88%97-Ring%20with%20a%20%E2%88%97-%CE%B1-Derivation&rft.jtitle=Journal%20of%20scientific%20perspectives&rft.au=BOSNALI,%20G%C3%BClay&rft.date=2018-07-31&rft.volume=2&rft.issue=3&rft.spage=51&rft.pages=51-&rft.eissn=2587-3008&rft_id=info:doi/10.26900/jsp.2018342244&rft_dat=%3Cproquest%3E2111128065%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c685-f1d353abdff673f425c249797aef53e24e66706ba070fab1665c8a30bfffd74a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111128065&rft_id=info:pmid/&rfr_iscdi=true