Loading…

Constructions and uses of incomplete pairwise balanced designs

We give explicit constructions for incomplete pairwise balanced designs IPBD\(((v;w),K)\), or, equivalently, edge-decompositions of a difference of two cliques \(K_v \setminus K_w\) into cliques whose sizes belong to the set \(K\). Our constructions produce such designs whenever \(v\) and \(w\) sati...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2018-09
Main Authors: Dukes, Peter J, Lamken, Esther R
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dukes, Peter J
Lamken, Esther R
description We give explicit constructions for incomplete pairwise balanced designs IPBD\(((v;w),K)\), or, equivalently, edge-decompositions of a difference of two cliques \(K_v \setminus K_w\) into cliques whose sizes belong to the set \(K\). Our constructions produce such designs whenever \(v\) and \(w\) satisfy the usual divisibility conditions, have ratio \(v/w\) bounded away from the smallest value in \(K\) minus one, say \(v/w > k-1+\epsilon\), for \(k =\min K\) and \(\epsilon>0\), and are sufficiently large (depending on \(K\) and \(\epsilon\)). As a consequence, some new results are obtained on many related designs, including class-uniformly resolvable designs, incomplete mutually orthogonal latin squares, and group divisible designs. We also include several other applications that illustrate the power of using IPBDs as `templates'.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2111434016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111434016</sourcerecordid><originalsourceid>FETCH-proquest_journals_21114340163</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC6kE9bXbkpigdwX2L6WlJqEvMSvL5deABXMzCzYYVUSlTnWsodK4lmzrlsT7JpVMEunXeUYjbJrgLaDZAJCfwI1hn_CgsmhKBt_FhCeOpFO4MDDEh2cnRg21EvhOWPe3a8XR_dvQrRvzNS6mefo1tTL4UQtaq5aNV_1xcD_zjC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111434016</pqid></control><display><type>article</type><title>Constructions and uses of incomplete pairwise balanced designs</title><source>Publicly Available Content (ProQuest)</source><creator>Dukes, Peter J ; Lamken, Esther R</creator><creatorcontrib>Dukes, Peter J ; Lamken, Esther R</creatorcontrib><description>We give explicit constructions for incomplete pairwise balanced designs IPBD\(((v;w),K)\), or, equivalently, edge-decompositions of a difference of two cliques \(K_v \setminus K_w\) into cliques whose sizes belong to the set \(K\). Our constructions produce such designs whenever \(v\) and \(w\) satisfy the usual divisibility conditions, have ratio \(v/w\) bounded away from the smallest value in \(K\) minus one, say \(v/w &gt; k-1+\epsilon\), for \(k =\min K\) and \(\epsilon&gt;0\), and are sufficiently large (depending on \(K\) and \(\epsilon\)). As a consequence, some new results are obtained on many related designs, including class-uniformly resolvable designs, incomplete mutually orthogonal latin squares, and group divisible designs. We also include several other applications that illustrate the power of using IPBDs as `templates'.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arrays</subject><ispartof>arXiv.org, 2018-09</ispartof><rights>2018. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2111434016?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Dukes, Peter J</creatorcontrib><creatorcontrib>Lamken, Esther R</creatorcontrib><title>Constructions and uses of incomplete pairwise balanced designs</title><title>arXiv.org</title><description>We give explicit constructions for incomplete pairwise balanced designs IPBD\(((v;w),K)\), or, equivalently, edge-decompositions of a difference of two cliques \(K_v \setminus K_w\) into cliques whose sizes belong to the set \(K\). Our constructions produce such designs whenever \(v\) and \(w\) satisfy the usual divisibility conditions, have ratio \(v/w\) bounded away from the smallest value in \(K\) minus one, say \(v/w &gt; k-1+\epsilon\), for \(k =\min K\) and \(\epsilon&gt;0\), and are sufficiently large (depending on \(K\) and \(\epsilon\)). As a consequence, some new results are obtained on many related designs, including class-uniformly resolvable designs, incomplete mutually orthogonal latin squares, and group divisible designs. We also include several other applications that illustrate the power of using IPBDs as `templates'.</description><subject>Arrays</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC6kE9bXbkpigdwX2L6WlJqEvMSvL5deABXMzCzYYVUSlTnWsodK4lmzrlsT7JpVMEunXeUYjbJrgLaDZAJCfwI1hn_CgsmhKBt_FhCeOpFO4MDDEh2cnRg21EvhOWPe3a8XR_dvQrRvzNS6mefo1tTL4UQtaq5aNV_1xcD_zjC</recordid><startdate>20180920</startdate><enddate>20180920</enddate><creator>Dukes, Peter J</creator><creator>Lamken, Esther R</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20180920</creationdate><title>Constructions and uses of incomplete pairwise balanced designs</title><author>Dukes, Peter J ; Lamken, Esther R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21114340163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arrays</topic><toplevel>online_resources</toplevel><creatorcontrib>Dukes, Peter J</creatorcontrib><creatorcontrib>Lamken, Esther R</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dukes, Peter J</au><au>Lamken, Esther R</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Constructions and uses of incomplete pairwise balanced designs</atitle><jtitle>arXiv.org</jtitle><date>2018-09-20</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>We give explicit constructions for incomplete pairwise balanced designs IPBD\(((v;w),K)\), or, equivalently, edge-decompositions of a difference of two cliques \(K_v \setminus K_w\) into cliques whose sizes belong to the set \(K\). Our constructions produce such designs whenever \(v\) and \(w\) satisfy the usual divisibility conditions, have ratio \(v/w\) bounded away from the smallest value in \(K\) minus one, say \(v/w &gt; k-1+\epsilon\), for \(k =\min K\) and \(\epsilon&gt;0\), and are sufficiently large (depending on \(K\) and \(\epsilon\)). As a consequence, some new results are obtained on many related designs, including class-uniformly resolvable designs, incomplete mutually orthogonal latin squares, and group divisible designs. We also include several other applications that illustrate the power of using IPBDs as `templates'.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2111434016
source Publicly Available Content (ProQuest)
subjects Arrays
title Constructions and uses of incomplete pairwise balanced designs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A15%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Constructions%20and%20uses%20of%20incomplete%20pairwise%20balanced%20designs&rft.jtitle=arXiv.org&rft.au=Dukes,%20Peter%20J&rft.date=2018-09-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2111434016%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_21114340163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111434016&rft_id=info:pmid/&rfr_iscdi=true