Loading…

Intelligent techniques for forecasting electricity consumption of buildings

The increasing trend in building sector's energy demand calls for reliable and robust energy consumption forecasting models. This study aims to compare prediction capabilities of five different intelligent system techniques by forecasting electricity consumption of an administration building lo...

Full description

Saved in:
Bibliographic Details
Published in:Energy (Oxford) 2018-08, Vol.157, p.886-893
Main Authors: Amber, K.P., Ahmad, R., Aslam, M.W., Kousar, A., Usman, M., Khan, M.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The increasing trend in building sector's energy demand calls for reliable and robust energy consumption forecasting models. This study aims to compare prediction capabilities of five different intelligent system techniques by forecasting electricity consumption of an administration building located in London, United Kingdom. These five techniques are; Multiple Regression (MR), Genetic Programming (GP), Artificial Neural Network (ANN), Deep Neural Network (DNN) and Support Vector Machine (SVM). The prediction models are developed based on five years of observed data of five different parameters such as solar radiation, temperature, wind speed, humidity and weekday index. Weekday index is an important parameter introduced to differentiate between working and non-working days. First four years data is used for training the models and to obtain prediction data for fifth year. Finally, the predicted electricity consumption of all models is compared with actual consumption of fifth year. Results demonstrate that ANN performs better than all other four techniques with a Mean Absolute Percentage Error (MAPE) of 6% whereas MR, GP, SVM and DNN have MAPE of 8.5%, 8.7%, 9% and 11%, respectively. The applicability of this study could span to other building categories and will help energy management teams to forecast energy consumption of various buildings. •Forecasting of daily electricity consumption for administration buildings.•Use of different intelligent forecasting techniques, i.e. MR, GP, ANN, DNN, SVM.•ANN outperforms all other forecasting techniques.
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2018.05.155