Loading…
Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body
•For high velocity vehicle, flow model is steady, body heat transfer model is unsteady.•Boundary condition convergency depends on the fluid and solid heat conductivity ratio.•In fluid domain Dirichlet BC should be set up and Neumann BC in solid one.•1D and 3D simulations with FEM and FD methods conf...
Saved in:
Published in: | Computers & fluids 2018-08, Vol.172, p.483-491 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053 |
container_end_page | 491 |
container_issue | |
container_start_page | 483 |
container_title | Computers & fluids |
container_volume | 172 |
creator | Galanin, M.P. Zhukov, V.T. Klyushnev, N.V. Kuzmina, K.S. Lukin, V.V. Marchevsky, I.K. Rodin, A.S. |
description | •For high velocity vehicle, flow model is steady, body heat transfer model is unsteady.•Boundary condition convergency depends on the fluid and solid heat conductivity ratio.•In fluid domain Dirichlet BC should be set up and Neumann BC in solid one.•1D and 3D simulations with FEM and FD methods confirm analysis conclusion.
The results of investigation of a numerical technique for coupled heat transfer problem solving for an atmospheric supersonic flying vehicle and flow around it are presented. An iterative numerical algorithm and software package are developed for heat transfer simulation in a flying vehicle structure during its motion in the atmosphere. The convergence of variants of the iterative process for solution matching on the surface with ideal thermal contact is studied. The results of the numerical experiment confirm the obtained theoretical estimates. |
doi_str_mv | 10.1016/j.compfluid.2018.03.048 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111752275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579301830152X</els_id><sourcerecordid>2111752275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKefwYDPrUmTNt3jGP6DgS_6HLL0Zs1om5qkk317Uya--nQ5cH7n3nsQuqckp4RWj4dcu3403WSbvCC0zgnLCa8v0ILWYpURwcUlWhDCy0ysGLlGNyEcSNKs4Avk3vqxgx6GqKJ1A3YGqwHbCD7pI2DV7Z23se2xcR7HFrB2UyIa3IKKOHo1BAMe2wFrFWDmW7tvszBC8pjOfWPl3TQ0WOGda0636MqoLsDd71yiz-enj81rtn1_edust5lmnMUMRGV2RJvVTgtYAatNyapaV2LHmVF11dTAqWkIKXjJKNfQlJwXtSo16IqSki3Rwzl39O5rghDlwU1-SCtlQSkVZVGI2SXOLu1dCB6MHL3tlT9JSuTcrjzIv3bl3K4kTKZ2E7k-k5CeOFrwMmgLQzrEetBRNs7-m_EDdT2I9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111752275</pqid></control><display><type>article</type><title>Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body</title><source>ScienceDirect Freedom Collection</source><creator>Galanin, M.P. ; Zhukov, V.T. ; Klyushnev, N.V. ; Kuzmina, K.S. ; Lukin, V.V. ; Marchevsky, I.K. ; Rodin, A.S.</creator><creatorcontrib>Galanin, M.P. ; Zhukov, V.T. ; Klyushnev, N.V. ; Kuzmina, K.S. ; Lukin, V.V. ; Marchevsky, I.K. ; Rodin, A.S.</creatorcontrib><description>•For high velocity vehicle, flow model is steady, body heat transfer model is unsteady.•Boundary condition convergency depends on the fluid and solid heat conductivity ratio.•In fluid domain Dirichlet BC should be set up and Neumann BC in solid one.•1D and 3D simulations with FEM and FD methods confirm analysis conclusion.
The results of investigation of a numerical technique for coupled heat transfer problem solving for an atmospheric supersonic flying vehicle and flow around it are presented. An iterative numerical algorithm and software package are developed for heat transfer simulation in a flying vehicle structure during its motion in the atmosphere. The convergence of variants of the iterative process for solution matching on the surface with ideal thermal contact is studied. The results of the numerical experiment confirm the obtained theoretical estimates.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2018.03.048</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Computer simulation ; Coupled problem ; Heat transfer ; Iterative algorithms ; Iterative methods ; Numerical analysis ; Numerical experiment ; Problem solving ; Shock wave ; Shock waves ; Supersonic flow ; Surface matching</subject><ispartof>Computers & fluids, 2018-08, Vol.172, p.483-491</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 30, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053</citedby><cites>FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053</cites><orcidid>0000-0001-6685-0073 ; 0000-0003-4899-4828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Galanin, M.P.</creatorcontrib><creatorcontrib>Zhukov, V.T.</creatorcontrib><creatorcontrib>Klyushnev, N.V.</creatorcontrib><creatorcontrib>Kuzmina, K.S.</creatorcontrib><creatorcontrib>Lukin, V.V.</creatorcontrib><creatorcontrib>Marchevsky, I.K.</creatorcontrib><creatorcontrib>Rodin, A.S.</creatorcontrib><title>Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body</title><title>Computers & fluids</title><description>•For high velocity vehicle, flow model is steady, body heat transfer model is unsteady.•Boundary condition convergency depends on the fluid and solid heat conductivity ratio.•In fluid domain Dirichlet BC should be set up and Neumann BC in solid one.•1D and 3D simulations with FEM and FD methods confirm analysis conclusion.
The results of investigation of a numerical technique for coupled heat transfer problem solving for an atmospheric supersonic flying vehicle and flow around it are presented. An iterative numerical algorithm and software package are developed for heat transfer simulation in a flying vehicle structure during its motion in the atmosphere. The convergence of variants of the iterative process for solution matching on the surface with ideal thermal contact is studied. The results of the numerical experiment confirm the obtained theoretical estimates.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Coupled problem</subject><subject>Heat transfer</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Numerical analysis</subject><subject>Numerical experiment</subject><subject>Problem solving</subject><subject>Shock wave</subject><subject>Shock waves</subject><subject>Supersonic flow</subject><subject>Surface matching</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKefwYDPrUmTNt3jGP6DgS_6HLL0Zs1om5qkk317Uya--nQ5cH7n3nsQuqckp4RWj4dcu3403WSbvCC0zgnLCa8v0ILWYpURwcUlWhDCy0ysGLlGNyEcSNKs4Avk3vqxgx6GqKJ1A3YGqwHbCD7pI2DV7Z23se2xcR7HFrB2UyIa3IKKOHo1BAMe2wFrFWDmW7tvszBC8pjOfWPl3TQ0WOGda0636MqoLsDd71yiz-enj81rtn1_edust5lmnMUMRGV2RJvVTgtYAatNyapaV2LHmVF11dTAqWkIKXjJKNfQlJwXtSo16IqSki3Rwzl39O5rghDlwU1-SCtlQSkVZVGI2SXOLu1dCB6MHL3tlT9JSuTcrjzIv3bl3K4kTKZ2E7k-k5CeOFrwMmgLQzrEetBRNs7-m_EDdT2I9A</recordid><startdate>20180830</startdate><enddate>20180830</enddate><creator>Galanin, M.P.</creator><creator>Zhukov, V.T.</creator><creator>Klyushnev, N.V.</creator><creator>Kuzmina, K.S.</creator><creator>Lukin, V.V.</creator><creator>Marchevsky, I.K.</creator><creator>Rodin, A.S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6685-0073</orcidid><orcidid>https://orcid.org/0000-0003-4899-4828</orcidid></search><sort><creationdate>20180830</creationdate><title>Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body</title><author>Galanin, M.P. ; Zhukov, V.T. ; Klyushnev, N.V. ; Kuzmina, K.S. ; Lukin, V.V. ; Marchevsky, I.K. ; Rodin, A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Coupled problem</topic><topic>Heat transfer</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Numerical analysis</topic><topic>Numerical experiment</topic><topic>Problem solving</topic><topic>Shock wave</topic><topic>Shock waves</topic><topic>Supersonic flow</topic><topic>Surface matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galanin, M.P.</creatorcontrib><creatorcontrib>Zhukov, V.T.</creatorcontrib><creatorcontrib>Klyushnev, N.V.</creatorcontrib><creatorcontrib>Kuzmina, K.S.</creatorcontrib><creatorcontrib>Lukin, V.V.</creatorcontrib><creatorcontrib>Marchevsky, I.K.</creatorcontrib><creatorcontrib>Rodin, A.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galanin, M.P.</au><au>Zhukov, V.T.</au><au>Klyushnev, N.V.</au><au>Kuzmina, K.S.</au><au>Lukin, V.V.</au><au>Marchevsky, I.K.</au><au>Rodin, A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body</atitle><jtitle>Computers & fluids</jtitle><date>2018-08-30</date><risdate>2018</risdate><volume>172</volume><spage>483</spage><epage>491</epage><pages>483-491</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•For high velocity vehicle, flow model is steady, body heat transfer model is unsteady.•Boundary condition convergency depends on the fluid and solid heat conductivity ratio.•In fluid domain Dirichlet BC should be set up and Neumann BC in solid one.•1D and 3D simulations with FEM and FD methods confirm analysis conclusion.
The results of investigation of a numerical technique for coupled heat transfer problem solving for an atmospheric supersonic flying vehicle and flow around it are presented. An iterative numerical algorithm and software package are developed for heat transfer simulation in a flying vehicle structure during its motion in the atmosphere. The convergence of variants of the iterative process for solution matching on the surface with ideal thermal contact is studied. The results of the numerical experiment confirm the obtained theoretical estimates.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2018.03.048</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6685-0073</orcidid><orcidid>https://orcid.org/0000-0003-4899-4828</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7930 |
ispartof | Computers & fluids, 2018-08, Vol.172, p.483-491 |
issn | 0045-7930 1879-0747 |
language | eng |
recordid | cdi_proquest_journals_2111752275 |
source | ScienceDirect Freedom Collection |
subjects | Algorithms Computer simulation Coupled problem Heat transfer Iterative algorithms Iterative methods Numerical analysis Numerical experiment Problem solving Shock wave Shock waves Supersonic flow Surface matching |
title | Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20an%20iterative%20algorithm%20for%20the%20coupled%20heat%20transfer%20in%20case%20of%20high-speed%20flow%20around%20a%20body&rft.jtitle=Computers%20&%20fluids&rft.au=Galanin,%20M.P.&rft.date=2018-08-30&rft.volume=172&rft.spage=483&rft.epage=491&rft.pages=483-491&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2018.03.048&rft_dat=%3Cproquest_cross%3E2111752275%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111752275&rft_id=info:pmid/&rfr_iscdi=true |