Loading…

Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body

•For high velocity vehicle, flow model is steady, body heat transfer model is unsteady.•Boundary condition convergency depends on the fluid and solid heat conductivity ratio.•In fluid domain Dirichlet BC should be set up and Neumann BC in solid one.•1D and 3D simulations with FEM and FD methods conf...

Full description

Saved in:
Bibliographic Details
Published in:Computers & fluids 2018-08, Vol.172, p.483-491
Main Authors: Galanin, M.P., Zhukov, V.T., Klyushnev, N.V., Kuzmina, K.S., Lukin, V.V., Marchevsky, I.K., Rodin, A.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053
cites cdi_FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053
container_end_page 491
container_issue
container_start_page 483
container_title Computers & fluids
container_volume 172
creator Galanin, M.P.
Zhukov, V.T.
Klyushnev, N.V.
Kuzmina, K.S.
Lukin, V.V.
Marchevsky, I.K.
Rodin, A.S.
description •For high velocity vehicle, flow model is steady, body heat transfer model is unsteady.•Boundary condition convergency depends on the fluid and solid heat conductivity ratio.•In fluid domain Dirichlet BC should be set up and Neumann BC in solid one.•1D and 3D simulations with FEM and FD methods confirm analysis conclusion. The results of investigation of a numerical technique for coupled heat transfer problem solving for an atmospheric supersonic flying vehicle and flow around it are presented. An iterative numerical algorithm and software package are developed for heat transfer simulation in a flying vehicle structure during its motion in the atmosphere. The convergence of variants of the iterative process for solution matching on the surface with ideal thermal contact is studied. The results of the numerical experiment confirm the obtained theoretical estimates.
doi_str_mv 10.1016/j.compfluid.2018.03.048
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111752275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S004579301830152X</els_id><sourcerecordid>2111752275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053</originalsourceid><addsrcrecordid>eNqFkF9LwzAUxYMoOKefwYDPrUmTNt3jGP6DgS_6HLL0Zs1om5qkk317Uya--nQ5cH7n3nsQuqckp4RWj4dcu3403WSbvCC0zgnLCa8v0ILWYpURwcUlWhDCy0ysGLlGNyEcSNKs4Avk3vqxgx6GqKJ1A3YGqwHbCD7pI2DV7Z23se2xcR7HFrB2UyIa3IKKOHo1BAMe2wFrFWDmW7tvszBC8pjOfWPl3TQ0WOGda0636MqoLsDd71yiz-enj81rtn1_edust5lmnMUMRGV2RJvVTgtYAatNyapaV2LHmVF11dTAqWkIKXjJKNfQlJwXtSo16IqSki3Rwzl39O5rghDlwU1-SCtlQSkVZVGI2SXOLu1dCB6MHL3tlT9JSuTcrjzIv3bl3K4kTKZ2E7k-k5CeOFrwMmgLQzrEetBRNs7-m_EDdT2I9A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111752275</pqid></control><display><type>article</type><title>Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body</title><source>ScienceDirect Freedom Collection</source><creator>Galanin, M.P. ; Zhukov, V.T. ; Klyushnev, N.V. ; Kuzmina, K.S. ; Lukin, V.V. ; Marchevsky, I.K. ; Rodin, A.S.</creator><creatorcontrib>Galanin, M.P. ; Zhukov, V.T. ; Klyushnev, N.V. ; Kuzmina, K.S. ; Lukin, V.V. ; Marchevsky, I.K. ; Rodin, A.S.</creatorcontrib><description>•For high velocity vehicle, flow model is steady, body heat transfer model is unsteady.•Boundary condition convergency depends on the fluid and solid heat conductivity ratio.•In fluid domain Dirichlet BC should be set up and Neumann BC in solid one.•1D and 3D simulations with FEM and FD methods confirm analysis conclusion. The results of investigation of a numerical technique for coupled heat transfer problem solving for an atmospheric supersonic flying vehicle and flow around it are presented. An iterative numerical algorithm and software package are developed for heat transfer simulation in a flying vehicle structure during its motion in the atmosphere. The convergence of variants of the iterative process for solution matching on the surface with ideal thermal contact is studied. The results of the numerical experiment confirm the obtained theoretical estimates.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2018.03.048</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Algorithms ; Computer simulation ; Coupled problem ; Heat transfer ; Iterative algorithms ; Iterative methods ; Numerical analysis ; Numerical experiment ; Problem solving ; Shock wave ; Shock waves ; Supersonic flow ; Surface matching</subject><ispartof>Computers &amp; fluids, 2018-08, Vol.172, p.483-491</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 30, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053</citedby><cites>FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053</cites><orcidid>0000-0001-6685-0073 ; 0000-0003-4899-4828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Galanin, M.P.</creatorcontrib><creatorcontrib>Zhukov, V.T.</creatorcontrib><creatorcontrib>Klyushnev, N.V.</creatorcontrib><creatorcontrib>Kuzmina, K.S.</creatorcontrib><creatorcontrib>Lukin, V.V.</creatorcontrib><creatorcontrib>Marchevsky, I.K.</creatorcontrib><creatorcontrib>Rodin, A.S.</creatorcontrib><title>Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body</title><title>Computers &amp; fluids</title><description>•For high velocity vehicle, flow model is steady, body heat transfer model is unsteady.•Boundary condition convergency depends on the fluid and solid heat conductivity ratio.•In fluid domain Dirichlet BC should be set up and Neumann BC in solid one.•1D and 3D simulations with FEM and FD methods confirm analysis conclusion. The results of investigation of a numerical technique for coupled heat transfer problem solving for an atmospheric supersonic flying vehicle and flow around it are presented. An iterative numerical algorithm and software package are developed for heat transfer simulation in a flying vehicle structure during its motion in the atmosphere. The convergence of variants of the iterative process for solution matching on the surface with ideal thermal contact is studied. The results of the numerical experiment confirm the obtained theoretical estimates.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Coupled problem</subject><subject>Heat transfer</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Numerical analysis</subject><subject>Numerical experiment</subject><subject>Problem solving</subject><subject>Shock wave</subject><subject>Shock waves</subject><subject>Supersonic flow</subject><subject>Surface matching</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkF9LwzAUxYMoOKefwYDPrUmTNt3jGP6DgS_6HLL0Zs1om5qkk317Uya--nQ5cH7n3nsQuqckp4RWj4dcu3403WSbvCC0zgnLCa8v0ILWYpURwcUlWhDCy0ysGLlGNyEcSNKs4Avk3vqxgx6GqKJ1A3YGqwHbCD7pI2DV7Z23se2xcR7HFrB2UyIa3IKKOHo1BAMe2wFrFWDmW7tvszBC8pjOfWPl3TQ0WOGda0636MqoLsDd71yiz-enj81rtn1_edust5lmnMUMRGV2RJvVTgtYAatNyapaV2LHmVF11dTAqWkIKXjJKNfQlJwXtSo16IqSki3Rwzl39O5rghDlwU1-SCtlQSkVZVGI2SXOLu1dCB6MHL3tlT9JSuTcrjzIv3bl3K4kTKZ2E7k-k5CeOFrwMmgLQzrEetBRNs7-m_EDdT2I9A</recordid><startdate>20180830</startdate><enddate>20180830</enddate><creator>Galanin, M.P.</creator><creator>Zhukov, V.T.</creator><creator>Klyushnev, N.V.</creator><creator>Kuzmina, K.S.</creator><creator>Lukin, V.V.</creator><creator>Marchevsky, I.K.</creator><creator>Rodin, A.S.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6685-0073</orcidid><orcidid>https://orcid.org/0000-0003-4899-4828</orcidid></search><sort><creationdate>20180830</creationdate><title>Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body</title><author>Galanin, M.P. ; Zhukov, V.T. ; Klyushnev, N.V. ; Kuzmina, K.S. ; Lukin, V.V. ; Marchevsky, I.K. ; Rodin, A.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Coupled problem</topic><topic>Heat transfer</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Numerical analysis</topic><topic>Numerical experiment</topic><topic>Problem solving</topic><topic>Shock wave</topic><topic>Shock waves</topic><topic>Supersonic flow</topic><topic>Surface matching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Galanin, M.P.</creatorcontrib><creatorcontrib>Zhukov, V.T.</creatorcontrib><creatorcontrib>Klyushnev, N.V.</creatorcontrib><creatorcontrib>Kuzmina, K.S.</creatorcontrib><creatorcontrib>Lukin, V.V.</creatorcontrib><creatorcontrib>Marchevsky, I.K.</creatorcontrib><creatorcontrib>Rodin, A.S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Galanin, M.P.</au><au>Zhukov, V.T.</au><au>Klyushnev, N.V.</au><au>Kuzmina, K.S.</au><au>Lukin, V.V.</au><au>Marchevsky, I.K.</au><au>Rodin, A.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body</atitle><jtitle>Computers &amp; fluids</jtitle><date>2018-08-30</date><risdate>2018</risdate><volume>172</volume><spage>483</spage><epage>491</epage><pages>483-491</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•For high velocity vehicle, flow model is steady, body heat transfer model is unsteady.•Boundary condition convergency depends on the fluid and solid heat conductivity ratio.•In fluid domain Dirichlet BC should be set up and Neumann BC in solid one.•1D and 3D simulations with FEM and FD methods confirm analysis conclusion. The results of investigation of a numerical technique for coupled heat transfer problem solving for an atmospheric supersonic flying vehicle and flow around it are presented. An iterative numerical algorithm and software package are developed for heat transfer simulation in a flying vehicle structure during its motion in the atmosphere. The convergence of variants of the iterative process for solution matching on the surface with ideal thermal contact is studied. The results of the numerical experiment confirm the obtained theoretical estimates.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2018.03.048</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6685-0073</orcidid><orcidid>https://orcid.org/0000-0003-4899-4828</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2018-08, Vol.172, p.483-491
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_journals_2111752275
source ScienceDirect Freedom Collection
subjects Algorithms
Computer simulation
Coupled problem
Heat transfer
Iterative algorithms
Iterative methods
Numerical analysis
Numerical experiment
Problem solving
Shock wave
Shock waves
Supersonic flow
Surface matching
title Implementation of an iterative algorithm for the coupled heat transfer in case of high-speed flow around a body
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A15%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Implementation%20of%20an%20iterative%20algorithm%20for%20the%20coupled%20heat%20transfer%20in%20case%20of%20high-speed%20flow%20around%20a%20body&rft.jtitle=Computers%20&%20fluids&rft.au=Galanin,%20M.P.&rft.date=2018-08-30&rft.volume=172&rft.spage=483&rft.epage=491&rft.pages=483-491&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2018.03.048&rft_dat=%3Cproquest_cross%3E2111752275%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-e76fb0cf9bc7e9e38f5368c67b43fa86d8e41fd00245314ced54428a5cec61053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111752275&rft_id=info:pmid/&rfr_iscdi=true