Loading…

New least squares method with geometric conservation law (GC-LSM) for compressible flow computation in meshless method

•A meshless method that overcomes the intrinsic non-conservative feature is proposed.•The geometric conservation law and first-order consistency are satisfied.•This method can accurately and robustly solve compressible flows with a strong shock.•This method does not lose accuracy even in randomly di...

Full description

Saved in:
Bibliographic Details
Published in:Computers & fluids 2018-08, Vol.172, p.122-146
Main Authors: Huh, Jin Young, Rhee, Jae Sang, Kim, Kyu Hong, Jung, Suk Young
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-4255d5db3acf0abe3cd073017f1c8d6d03145767a30cba70c30019b88c351f5b3
cites cdi_FETCH-LOGICAL-c343t-4255d5db3acf0abe3cd073017f1c8d6d03145767a30cba70c30019b88c351f5b3
container_end_page 146
container_issue
container_start_page 122
container_title Computers & fluids
container_volume 172
creator Huh, Jin Young
Rhee, Jae Sang
Kim, Kyu Hong
Jung, Suk Young
description •A meshless method that overcomes the intrinsic non-conservative feature is proposed.•The geometric conservation law and first-order consistency are satisfied.•This method can accurately and robustly solve compressible flows with a strong shock.•This method does not lose accuracy even in randomly distributed points. In this study, we propose a meshless scheme, GC-LSM (Geometric Conservation Least Squares Method), satisfying the geometric conservation and 1st order consistency. These constraints are introduced in order to overcome the non-conservativeness of the original meshless scheme and imposed by Lagrange multiplier on the least squares method which determines weighting coefficients of the derivative terms. Improvements on the meshless scheme are confirmed through computations with randomly distributed grid points for a sine wave, nozzle flow, and hypersonic flow around blunt body. Combined with AUSMPW + and MUSCL scheme, GC-LSM of the second order accuracy gives non-oscillating solution around a strong shockwave, even for hypersonic flow, and shows its capability comparable to the finite volume method in views of accuracy, robustness, and convergence.
doi_str_mv 10.1016/j.compfluid.2018.06.010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111752489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045793018303359</els_id><sourcerecordid>2111752489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-4255d5db3acf0abe3cd073017f1c8d6d03145767a30cba70c30019b88c351f5b3</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqXwG7DEAkPCOU7idKwqKEgFBmC2HNuhjtK4tZNG_HtcUrEyne70vXd3D6FrAjEBkt_XsbSbbdX0RsUJkCKGPAYCJ2hCCjaLgKXsFE0A0ixiMwrn6ML7GkJPk3SC9q96wI0WvsN-1wunPd7obm0VHky3xl_ahtYZiaVtvXZ70Rnb4kYM-Ha5iFbvL3e4sg4fTghab8pG46qxw--k70bctMHUr5sAHN0v0VklGq-vjnWKPh8fPhZP0ept-byYryJJU9pFaZJlKlMlFbICUWoqFTAKhFVEFipXQEmasZwJCrIUDCQFILOyKCTNSJWVdIpuRt-ts7te-47XtndtWMkTQgjLkrSYBYqNlHTWe6crvnVmI9w3J8APIfOa_4XMDyFzyHkIOSjno1KHJ_ZGO-6l0a3UyjgtO66s-dfjB5Qni2E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111752489</pqid></control><display><type>article</type><title>New least squares method with geometric conservation law (GC-LSM) for compressible flow computation in meshless method</title><source>ScienceDirect Freedom Collection</source><creator>Huh, Jin Young ; Rhee, Jae Sang ; Kim, Kyu Hong ; Jung, Suk Young</creator><creatorcontrib>Huh, Jin Young ; Rhee, Jae Sang ; Kim, Kyu Hong ; Jung, Suk Young</creatorcontrib><description>•A meshless method that overcomes the intrinsic non-conservative feature is proposed.•The geometric conservation law and first-order consistency are satisfied.•This method can accurately and robustly solve compressible flows with a strong shock.•This method does not lose accuracy even in randomly distributed points. In this study, we propose a meshless scheme, GC-LSM (Geometric Conservation Least Squares Method), satisfying the geometric conservation and 1st order consistency. These constraints are introduced in order to overcome the non-conservativeness of the original meshless scheme and imposed by Lagrange multiplier on the least squares method which determines weighting coefficients of the derivative terms. Improvements on the meshless scheme are confirmed through computations with randomly distributed grid points for a sine wave, nozzle flow, and hypersonic flow around blunt body. Combined with AUSMPW + and MUSCL scheme, GC-LSM of the second order accuracy gives non-oscillating solution around a strong shockwave, even for hypersonic flow, and shows its capability comparable to the finite volume method in views of accuracy, robustness, and convergence.</description><identifier>ISSN: 0045-7930</identifier><identifier>EISSN: 1879-0747</identifier><identifier>DOI: 10.1016/j.compfluid.2018.06.010</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>AUSMPW ; Compressible flow ; Conservation ; Finite element method ; Finite volume method ; Fluid dynamics ; GC-LSM ; Geometric conservation law ; Geometry ; Hypersonic flow ; Lagrange multiplier ; Least squares method ; Mathematical analysis ; Meshless method ; Meshless methods ; MUSCL limiters ; MUSCL schemes ; Nozzle flow ; Nozzles ; Sine waves</subject><ispartof>Computers &amp; fluids, 2018-08, Vol.172, p.122-146</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 30, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-4255d5db3acf0abe3cd073017f1c8d6d03145767a30cba70c30019b88c351f5b3</citedby><cites>FETCH-LOGICAL-c343t-4255d5db3acf0abe3cd073017f1c8d6d03145767a30cba70c30019b88c351f5b3</cites><orcidid>0000-0002-5179-7879</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Huh, Jin Young</creatorcontrib><creatorcontrib>Rhee, Jae Sang</creatorcontrib><creatorcontrib>Kim, Kyu Hong</creatorcontrib><creatorcontrib>Jung, Suk Young</creatorcontrib><title>New least squares method with geometric conservation law (GC-LSM) for compressible flow computation in meshless method</title><title>Computers &amp; fluids</title><description>•A meshless method that overcomes the intrinsic non-conservative feature is proposed.•The geometric conservation law and first-order consistency are satisfied.•This method can accurately and robustly solve compressible flows with a strong shock.•This method does not lose accuracy even in randomly distributed points. In this study, we propose a meshless scheme, GC-LSM (Geometric Conservation Least Squares Method), satisfying the geometric conservation and 1st order consistency. These constraints are introduced in order to overcome the non-conservativeness of the original meshless scheme and imposed by Lagrange multiplier on the least squares method which determines weighting coefficients of the derivative terms. Improvements on the meshless scheme are confirmed through computations with randomly distributed grid points for a sine wave, nozzle flow, and hypersonic flow around blunt body. Combined with AUSMPW + and MUSCL scheme, GC-LSM of the second order accuracy gives non-oscillating solution around a strong shockwave, even for hypersonic flow, and shows its capability comparable to the finite volume method in views of accuracy, robustness, and convergence.</description><subject>AUSMPW</subject><subject>Compressible flow</subject><subject>Conservation</subject><subject>Finite element method</subject><subject>Finite volume method</subject><subject>Fluid dynamics</subject><subject>GC-LSM</subject><subject>Geometric conservation law</subject><subject>Geometry</subject><subject>Hypersonic flow</subject><subject>Lagrange multiplier</subject><subject>Least squares method</subject><subject>Mathematical analysis</subject><subject>Meshless method</subject><subject>Meshless methods</subject><subject>MUSCL limiters</subject><subject>MUSCL schemes</subject><subject>Nozzle flow</subject><subject>Nozzles</subject><subject>Sine waves</subject><issn>0045-7930</issn><issn>1879-0747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqXwG7DEAkPCOU7idKwqKEgFBmC2HNuhjtK4tZNG_HtcUrEyne70vXd3D6FrAjEBkt_XsbSbbdX0RsUJkCKGPAYCJ2hCCjaLgKXsFE0A0ixiMwrn6ML7GkJPk3SC9q96wI0WvsN-1wunPd7obm0VHky3xl_ahtYZiaVtvXZ70Rnb4kYM-Ha5iFbvL3e4sg4fTghab8pG46qxw--k70bctMHUr5sAHN0v0VklGq-vjnWKPh8fPhZP0ept-byYryJJU9pFaZJlKlMlFbICUWoqFTAKhFVEFipXQEmasZwJCrIUDCQFILOyKCTNSJWVdIpuRt-ts7te-47XtndtWMkTQgjLkrSYBYqNlHTWe6crvnVmI9w3J8APIfOa_4XMDyFzyHkIOSjno1KHJ_ZGO-6l0a3UyjgtO66s-dfjB5Qni2E</recordid><startdate>20180830</startdate><enddate>20180830</enddate><creator>Huh, Jin Young</creator><creator>Rhee, Jae Sang</creator><creator>Kim, Kyu Hong</creator><creator>Jung, Suk Young</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5179-7879</orcidid></search><sort><creationdate>20180830</creationdate><title>New least squares method with geometric conservation law (GC-LSM) for compressible flow computation in meshless method</title><author>Huh, Jin Young ; Rhee, Jae Sang ; Kim, Kyu Hong ; Jung, Suk Young</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-4255d5db3acf0abe3cd073017f1c8d6d03145767a30cba70c30019b88c351f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>AUSMPW</topic><topic>Compressible flow</topic><topic>Conservation</topic><topic>Finite element method</topic><topic>Finite volume method</topic><topic>Fluid dynamics</topic><topic>GC-LSM</topic><topic>Geometric conservation law</topic><topic>Geometry</topic><topic>Hypersonic flow</topic><topic>Lagrange multiplier</topic><topic>Least squares method</topic><topic>Mathematical analysis</topic><topic>Meshless method</topic><topic>Meshless methods</topic><topic>MUSCL limiters</topic><topic>MUSCL schemes</topic><topic>Nozzle flow</topic><topic>Nozzles</topic><topic>Sine waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huh, Jin Young</creatorcontrib><creatorcontrib>Rhee, Jae Sang</creatorcontrib><creatorcontrib>Kim, Kyu Hong</creatorcontrib><creatorcontrib>Jung, Suk Young</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huh, Jin Young</au><au>Rhee, Jae Sang</au><au>Kim, Kyu Hong</au><au>Jung, Suk Young</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New least squares method with geometric conservation law (GC-LSM) for compressible flow computation in meshless method</atitle><jtitle>Computers &amp; fluids</jtitle><date>2018-08-30</date><risdate>2018</risdate><volume>172</volume><spage>122</spage><epage>146</epage><pages>122-146</pages><issn>0045-7930</issn><eissn>1879-0747</eissn><abstract>•A meshless method that overcomes the intrinsic non-conservative feature is proposed.•The geometric conservation law and first-order consistency are satisfied.•This method can accurately and robustly solve compressible flows with a strong shock.•This method does not lose accuracy even in randomly distributed points. In this study, we propose a meshless scheme, GC-LSM (Geometric Conservation Least Squares Method), satisfying the geometric conservation and 1st order consistency. These constraints are introduced in order to overcome the non-conservativeness of the original meshless scheme and imposed by Lagrange multiplier on the least squares method which determines weighting coefficients of the derivative terms. Improvements on the meshless scheme are confirmed through computations with randomly distributed grid points for a sine wave, nozzle flow, and hypersonic flow around blunt body. Combined with AUSMPW + and MUSCL scheme, GC-LSM of the second order accuracy gives non-oscillating solution around a strong shockwave, even for hypersonic flow, and shows its capability comparable to the finite volume method in views of accuracy, robustness, and convergence.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compfluid.2018.06.010</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-5179-7879</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7930
ispartof Computers & fluids, 2018-08, Vol.172, p.122-146
issn 0045-7930
1879-0747
language eng
recordid cdi_proquest_journals_2111752489
source ScienceDirect Freedom Collection
subjects AUSMPW
Compressible flow
Conservation
Finite element method
Finite volume method
Fluid dynamics
GC-LSM
Geometric conservation law
Geometry
Hypersonic flow
Lagrange multiplier
Least squares method
Mathematical analysis
Meshless method
Meshless methods
MUSCL limiters
MUSCL schemes
Nozzle flow
Nozzles
Sine waves
title New least squares method with geometric conservation law (GC-LSM) for compressible flow computation in meshless method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20least%20squares%20method%20with%20geometric%20conservation%20law%20(GC-LSM)%20for%20compressible%20flow%20computation%20in%20meshless%20method&rft.jtitle=Computers%20&%20fluids&rft.au=Huh,%20Jin%20Young&rft.date=2018-08-30&rft.volume=172&rft.spage=122&rft.epage=146&rft.pages=122-146&rft.issn=0045-7930&rft.eissn=1879-0747&rft_id=info:doi/10.1016/j.compfluid.2018.06.010&rft_dat=%3Cproquest_cross%3E2111752489%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-4255d5db3acf0abe3cd073017f1c8d6d03145767a30cba70c30019b88c351f5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111752489&rft_id=info:pmid/&rfr_iscdi=true