Loading…

Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles

In this work, we improved photovoltaic performance by about 27% in planar p-i-n perovskite solar cells (PSCs) using plasmonic Au@SiO2 core–shell nanoparticles (NPs). The devices have an architecture of ITO glass/PEDOT:PSS/perovskite(CH3NH3PbI3)/PCBM/Rhodamine/Ag. Four batches of devices were fabrica...

Full description

Saved in:
Bibliographic Details
Published in:Sustainable energy & fuels 2018-10, Vol.2 (10), p.2260-2267
Main Authors: Chandrasekhar, P S, Dubey, Ashish, Khan, Mamun Reza, Hasan, M D Nazmul, Bahrami, Behzad, Komarala, Vamsi K, Hoefelmeyer, James D, He, Qingquan, Wu, Fan, Qiao, Hui, Zhang, Wen-Hua, Qiao, Qiquan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2267
container_issue 10
container_start_page 2260
container_title Sustainable energy & fuels
container_volume 2
creator Chandrasekhar, P S
Dubey, Ashish
Khan, Mamun Reza
Hasan, M D Nazmul
Bahrami, Behzad
Komarala, Vamsi K
Hoefelmeyer, James D
He, Qingquan
Wu, Fan
Qiao, Hui
Zhang, Wen-Hua
Qiao, Qiquan
description In this work, we improved photovoltaic performance by about 27% in planar p-i-n perovskite solar cells (PSCs) using plasmonic Au@SiO2 core–shell nanoparticles (NPs). The devices have an architecture of ITO glass/PEDOT:PSS/perovskite(CH3NH3PbI3)/PCBM/Rhodamine/Ag. Four batches of devices were fabricated with different concentrations of Au@SiO2 NPs ranging from 0.4 to 1.6 wt% with an interval of 0.4 wt%. The Au@SiO2 NPs were integrated at the interface between the PEDOT:PSS layer and the active perovskite layer. At an optimized concentration of 1.2 wt% Au@SiO2 NPs, the PSCs achieved 25.1% of enhancement in photocurrent from 17.45 to 22.35 mA cm−2 and an improvement of 27.3% in power conversion efficiency (PCE) from 11.44 to 14.57%. This significant improvement in device performance is attributed to the localized surface plasmon resonance (LSPR) of Au@SiO2 NPs, which enhanced the light absorption in the active perovskite layer. The transient photocurrent and photovoltage measurements revealed that PSCs with Au@SiO2 NPs have a faster charge transport time and longer recombination lifetime than those without Au@SiO2 NPs. These results demonstrate that plasmonic metal nanoparticles substantially improved the efficiency of PSCs.
doi_str_mv 10.1039/c7se00472a
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2111853236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111853236</sourcerecordid><originalsourceid>FETCH-LOGICAL-p161t-2eb7163589d8efe725204c583b1a2ca5fb63b039d888286c95ae1e6047257d3e3</originalsourceid><addsrcrecordid>eNotj81KAzEURoMgWGo3PkHA9WhyM_mZnaWoFQpF1HXJZO60qWEyJjOCO9_BN_RJHNHVWXxwPg4hF5xdcSaqa6czMlZqsCdkBqIyRVkxOCOLnI-MMeBQgtQz8rj2-wMmim3rncfOfdAeU3zPr35AmmOwiToMIdMx-25Pl-PNk98CdTHh9-dXPkwb7WwXe5sG7wLmc3La2pBx8c85ebm7fV6ti832_mG13BQ9V3woAGvNlZCmagy2qEECK500ouYWnJVtrUQ9lTTGGDDKVdIiR_WbJHUjUMzJ5Z-3T_FtxDzsjnFM3XS5A865kQKEEj-WplBP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111853236</pqid></control><display><type>article</type><title>Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles</title><source>Royal Society of Chemistry</source><creator>Chandrasekhar, P S ; Dubey, Ashish ; Khan, Mamun Reza ; Hasan, M D Nazmul ; Bahrami, Behzad ; Komarala, Vamsi K ; Hoefelmeyer, James D ; He, Qingquan ; Wu, Fan ; Qiao, Hui ; Zhang, Wen-Hua ; Qiao, Qiquan</creator><creatorcontrib>Chandrasekhar, P S ; Dubey, Ashish ; Khan, Mamun Reza ; Hasan, M D Nazmul ; Bahrami, Behzad ; Komarala, Vamsi K ; Hoefelmeyer, James D ; He, Qingquan ; Wu, Fan ; Qiao, Hui ; Zhang, Wen-Hua ; Qiao, Qiquan</creatorcontrib><description>In this work, we improved photovoltaic performance by about 27% in planar p-i-n perovskite solar cells (PSCs) using plasmonic Au@SiO2 core–shell nanoparticles (NPs). The devices have an architecture of ITO glass/PEDOT:PSS/perovskite(CH3NH3PbI3)/PCBM/Rhodamine/Ag. Four batches of devices were fabricated with different concentrations of Au@SiO2 NPs ranging from 0.4 to 1.6 wt% with an interval of 0.4 wt%. The Au@SiO2 NPs were integrated at the interface between the PEDOT:PSS layer and the active perovskite layer. At an optimized concentration of 1.2 wt% Au@SiO2 NPs, the PSCs achieved 25.1% of enhancement in photocurrent from 17.45 to 22.35 mA cm−2 and an improvement of 27.3% in power conversion efficiency (PCE) from 11.44 to 14.57%. This significant improvement in device performance is attributed to the localized surface plasmon resonance (LSPR) of Au@SiO2 NPs, which enhanced the light absorption in the active perovskite layer. The transient photocurrent and photovoltage measurements revealed that PSCs with Au@SiO2 NPs have a faster charge transport time and longer recombination lifetime than those without Au@SiO2 NPs. These results demonstrate that plasmonic metal nanoparticles substantially improved the efficiency of PSCs.</description><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/c7se00472a</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Charge transport ; Core-shell particles ; Efficiency ; Electromagnetic absorption ; Energy conversion efficiency ; Gold ; Nanoparticles ; Perovskites ; Photoelectric effect ; Photoelectric emission ; Photovoltaic cells ; Photovoltaics ; Recombination ; Rhodamine ; Silicon dioxide ; Solar cells ; Surface plasmon resonance</subject><ispartof>Sustainable energy &amp; fuels, 2018-10, Vol.2 (10), p.2260-2267</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chandrasekhar, P S</creatorcontrib><creatorcontrib>Dubey, Ashish</creatorcontrib><creatorcontrib>Khan, Mamun Reza</creatorcontrib><creatorcontrib>Hasan, M D Nazmul</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Komarala, Vamsi K</creatorcontrib><creatorcontrib>Hoefelmeyer, James D</creatorcontrib><creatorcontrib>He, Qingquan</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Qiao, Hui</creatorcontrib><creatorcontrib>Zhang, Wen-Hua</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><title>Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles</title><title>Sustainable energy &amp; fuels</title><description>In this work, we improved photovoltaic performance by about 27% in planar p-i-n perovskite solar cells (PSCs) using plasmonic Au@SiO2 core–shell nanoparticles (NPs). The devices have an architecture of ITO glass/PEDOT:PSS/perovskite(CH3NH3PbI3)/PCBM/Rhodamine/Ag. Four batches of devices were fabricated with different concentrations of Au@SiO2 NPs ranging from 0.4 to 1.6 wt% with an interval of 0.4 wt%. The Au@SiO2 NPs were integrated at the interface between the PEDOT:PSS layer and the active perovskite layer. At an optimized concentration of 1.2 wt% Au@SiO2 NPs, the PSCs achieved 25.1% of enhancement in photocurrent from 17.45 to 22.35 mA cm−2 and an improvement of 27.3% in power conversion efficiency (PCE) from 11.44 to 14.57%. This significant improvement in device performance is attributed to the localized surface plasmon resonance (LSPR) of Au@SiO2 NPs, which enhanced the light absorption in the active perovskite layer. The transient photocurrent and photovoltage measurements revealed that PSCs with Au@SiO2 NPs have a faster charge transport time and longer recombination lifetime than those without Au@SiO2 NPs. These results demonstrate that plasmonic metal nanoparticles substantially improved the efficiency of PSCs.</description><subject>Charge transport</subject><subject>Core-shell particles</subject><subject>Efficiency</subject><subject>Electromagnetic absorption</subject><subject>Energy conversion efficiency</subject><subject>Gold</subject><subject>Nanoparticles</subject><subject>Perovskites</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Recombination</subject><subject>Rhodamine</subject><subject>Silicon dioxide</subject><subject>Solar cells</subject><subject>Surface plasmon resonance</subject><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotj81KAzEURoMgWGo3PkHA9WhyM_mZnaWoFQpF1HXJZO60qWEyJjOCO9_BN_RJHNHVWXxwPg4hF5xdcSaqa6czMlZqsCdkBqIyRVkxOCOLnI-MMeBQgtQz8rj2-wMmim3rncfOfdAeU3zPr35AmmOwiToMIdMx-25Pl-PNk98CdTHh9-dXPkwb7WwXe5sG7wLmc3La2pBx8c85ebm7fV6ti832_mG13BQ9V3woAGvNlZCmagy2qEECK500ouYWnJVtrUQ9lTTGGDDKVdIiR_WbJHUjUMzJ5Z-3T_FtxDzsjnFM3XS5A865kQKEEj-WplBP</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Chandrasekhar, P S</creator><creator>Dubey, Ashish</creator><creator>Khan, Mamun Reza</creator><creator>Hasan, M D Nazmul</creator><creator>Bahrami, Behzad</creator><creator>Komarala, Vamsi K</creator><creator>Hoefelmeyer, James D</creator><creator>He, Qingquan</creator><creator>Wu, Fan</creator><creator>Qiao, Hui</creator><creator>Zhang, Wen-Hua</creator><creator>Qiao, Qiquan</creator><general>Royal Society of Chemistry</general><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20181001</creationdate><title>Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles</title><author>Chandrasekhar, P S ; Dubey, Ashish ; Khan, Mamun Reza ; Hasan, M D Nazmul ; Bahrami, Behzad ; Komarala, Vamsi K ; Hoefelmeyer, James D ; He, Qingquan ; Wu, Fan ; Qiao, Hui ; Zhang, Wen-Hua ; Qiao, Qiquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p161t-2eb7163589d8efe725204c583b1a2ca5fb63b039d888286c95ae1e6047257d3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge transport</topic><topic>Core-shell particles</topic><topic>Efficiency</topic><topic>Electromagnetic absorption</topic><topic>Energy conversion efficiency</topic><topic>Gold</topic><topic>Nanoparticles</topic><topic>Perovskites</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Recombination</topic><topic>Rhodamine</topic><topic>Silicon dioxide</topic><topic>Solar cells</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekhar, P S</creatorcontrib><creatorcontrib>Dubey, Ashish</creatorcontrib><creatorcontrib>Khan, Mamun Reza</creatorcontrib><creatorcontrib>Hasan, M D Nazmul</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Komarala, Vamsi K</creatorcontrib><creatorcontrib>Hoefelmeyer, James D</creatorcontrib><creatorcontrib>He, Qingquan</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Qiao, Hui</creatorcontrib><creatorcontrib>Zhang, Wen-Hua</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy &amp; fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekhar, P S</au><au>Dubey, Ashish</au><au>Khan, Mamun Reza</au><au>Hasan, M D Nazmul</au><au>Bahrami, Behzad</au><au>Komarala, Vamsi K</au><au>Hoefelmeyer, James D</au><au>He, Qingquan</au><au>Wu, Fan</au><au>Qiao, Hui</au><au>Zhang, Wen-Hua</au><au>Qiao, Qiquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles</atitle><jtitle>Sustainable energy &amp; fuels</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>2</volume><issue>10</issue><spage>2260</spage><epage>2267</epage><pages>2260-2267</pages><eissn>2398-4902</eissn><abstract>In this work, we improved photovoltaic performance by about 27% in planar p-i-n perovskite solar cells (PSCs) using plasmonic Au@SiO2 core–shell nanoparticles (NPs). The devices have an architecture of ITO glass/PEDOT:PSS/perovskite(CH3NH3PbI3)/PCBM/Rhodamine/Ag. Four batches of devices were fabricated with different concentrations of Au@SiO2 NPs ranging from 0.4 to 1.6 wt% with an interval of 0.4 wt%. The Au@SiO2 NPs were integrated at the interface between the PEDOT:PSS layer and the active perovskite layer. At an optimized concentration of 1.2 wt% Au@SiO2 NPs, the PSCs achieved 25.1% of enhancement in photocurrent from 17.45 to 22.35 mA cm−2 and an improvement of 27.3% in power conversion efficiency (PCE) from 11.44 to 14.57%. This significant improvement in device performance is attributed to the localized surface plasmon resonance (LSPR) of Au@SiO2 NPs, which enhanced the light absorption in the active perovskite layer. The transient photocurrent and photovoltage measurements revealed that PSCs with Au@SiO2 NPs have a faster charge transport time and longer recombination lifetime than those without Au@SiO2 NPs. These results demonstrate that plasmonic metal nanoparticles substantially improved the efficiency of PSCs.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7se00472a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier EISSN: 2398-4902
ispartof Sustainable energy & fuels, 2018-10, Vol.2 (10), p.2260-2267
issn 2398-4902
language eng
recordid cdi_proquest_journals_2111853236
source Royal Society of Chemistry
subjects Charge transport
Core-shell particles
Efficiency
Electromagnetic absorption
Energy conversion efficiency
Gold
Nanoparticles
Perovskites
Photoelectric effect
Photoelectric emission
Photovoltaic cells
Photovoltaics
Recombination
Rhodamine
Silicon dioxide
Solar cells
Surface plasmon resonance
title Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20efficiency%20perovskite%20solar%20cells%20using%20Au@SiO2%20core%E2%80%93shell%20nanoparticles&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Chandrasekhar,%20P%20S&rft.date=2018-10-01&rft.volume=2&rft.issue=10&rft.spage=2260&rft.epage=2267&rft.pages=2260-2267&rft.eissn=2398-4902&rft_id=info:doi/10.1039/c7se00472a&rft_dat=%3Cproquest%3E2111853236%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p161t-2eb7163589d8efe725204c583b1a2ca5fb63b039d888286c95ae1e6047257d3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111853236&rft_id=info:pmid/&rfr_iscdi=true