Loading…
Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles
In this work, we improved photovoltaic performance by about 27% in planar p-i-n perovskite solar cells (PSCs) using plasmonic Au@SiO2 core–shell nanoparticles (NPs). The devices have an architecture of ITO glass/PEDOT:PSS/perovskite(CH3NH3PbI3)/PCBM/Rhodamine/Ag. Four batches of devices were fabrica...
Saved in:
Published in: | Sustainable energy & fuels 2018-10, Vol.2 (10), p.2260-2267 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2267 |
container_issue | 10 |
container_start_page | 2260 |
container_title | Sustainable energy & fuels |
container_volume | 2 |
creator | Chandrasekhar, P S Dubey, Ashish Khan, Mamun Reza Hasan, M D Nazmul Bahrami, Behzad Komarala, Vamsi K Hoefelmeyer, James D He, Qingquan Wu, Fan Qiao, Hui Zhang, Wen-Hua Qiao, Qiquan |
description | In this work, we improved photovoltaic performance by about 27% in planar p-i-n perovskite solar cells (PSCs) using plasmonic Au@SiO2 core–shell nanoparticles (NPs). The devices have an architecture of ITO glass/PEDOT:PSS/perovskite(CH3NH3PbI3)/PCBM/Rhodamine/Ag. Four batches of devices were fabricated with different concentrations of Au@SiO2 NPs ranging from 0.4 to 1.6 wt% with an interval of 0.4 wt%. The Au@SiO2 NPs were integrated at the interface between the PEDOT:PSS layer and the active perovskite layer. At an optimized concentration of 1.2 wt% Au@SiO2 NPs, the PSCs achieved 25.1% of enhancement in photocurrent from 17.45 to 22.35 mA cm−2 and an improvement of 27.3% in power conversion efficiency (PCE) from 11.44 to 14.57%. This significant improvement in device performance is attributed to the localized surface plasmon resonance (LSPR) of Au@SiO2 NPs, which enhanced the light absorption in the active perovskite layer. The transient photocurrent and photovoltage measurements revealed that PSCs with Au@SiO2 NPs have a faster charge transport time and longer recombination lifetime than those without Au@SiO2 NPs. These results demonstrate that plasmonic metal nanoparticles substantially improved the efficiency of PSCs. |
doi_str_mv | 10.1039/c7se00472a |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2111853236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111853236</sourcerecordid><originalsourceid>FETCH-LOGICAL-p161t-2eb7163589d8efe725204c583b1a2ca5fb63b039d888286c95ae1e6047257d3e3</originalsourceid><addsrcrecordid>eNotj81KAzEURoMgWGo3PkHA9WhyM_mZnaWoFQpF1HXJZO60qWEyJjOCO9_BN_RJHNHVWXxwPg4hF5xdcSaqa6czMlZqsCdkBqIyRVkxOCOLnI-MMeBQgtQz8rj2-wMmim3rncfOfdAeU3zPr35AmmOwiToMIdMx-25Pl-PNk98CdTHh9-dXPkwb7WwXe5sG7wLmc3La2pBx8c85ebm7fV6ti832_mG13BQ9V3woAGvNlZCmagy2qEECK500ouYWnJVtrUQ9lTTGGDDKVdIiR_WbJHUjUMzJ5Z-3T_FtxDzsjnFM3XS5A865kQKEEj-WplBP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111853236</pqid></control><display><type>article</type><title>Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles</title><source>Royal Society of Chemistry</source><creator>Chandrasekhar, P S ; Dubey, Ashish ; Khan, Mamun Reza ; Hasan, M D Nazmul ; Bahrami, Behzad ; Komarala, Vamsi K ; Hoefelmeyer, James D ; He, Qingquan ; Wu, Fan ; Qiao, Hui ; Zhang, Wen-Hua ; Qiao, Qiquan</creator><creatorcontrib>Chandrasekhar, P S ; Dubey, Ashish ; Khan, Mamun Reza ; Hasan, M D Nazmul ; Bahrami, Behzad ; Komarala, Vamsi K ; Hoefelmeyer, James D ; He, Qingquan ; Wu, Fan ; Qiao, Hui ; Zhang, Wen-Hua ; Qiao, Qiquan</creatorcontrib><description>In this work, we improved photovoltaic performance by about 27% in planar p-i-n perovskite solar cells (PSCs) using plasmonic Au@SiO2 core–shell nanoparticles (NPs). The devices have an architecture of ITO glass/PEDOT:PSS/perovskite(CH3NH3PbI3)/PCBM/Rhodamine/Ag. Four batches of devices were fabricated with different concentrations of Au@SiO2 NPs ranging from 0.4 to 1.6 wt% with an interval of 0.4 wt%. The Au@SiO2 NPs were integrated at the interface between the PEDOT:PSS layer and the active perovskite layer. At an optimized concentration of 1.2 wt% Au@SiO2 NPs, the PSCs achieved 25.1% of enhancement in photocurrent from 17.45 to 22.35 mA cm−2 and an improvement of 27.3% in power conversion efficiency (PCE) from 11.44 to 14.57%. This significant improvement in device performance is attributed to the localized surface plasmon resonance (LSPR) of Au@SiO2 NPs, which enhanced the light absorption in the active perovskite layer. The transient photocurrent and photovoltage measurements revealed that PSCs with Au@SiO2 NPs have a faster charge transport time and longer recombination lifetime than those without Au@SiO2 NPs. These results demonstrate that plasmonic metal nanoparticles substantially improved the efficiency of PSCs.</description><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/c7se00472a</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Charge transport ; Core-shell particles ; Efficiency ; Electromagnetic absorption ; Energy conversion efficiency ; Gold ; Nanoparticles ; Perovskites ; Photoelectric effect ; Photoelectric emission ; Photovoltaic cells ; Photovoltaics ; Recombination ; Rhodamine ; Silicon dioxide ; Solar cells ; Surface plasmon resonance</subject><ispartof>Sustainable energy & fuels, 2018-10, Vol.2 (10), p.2260-2267</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chandrasekhar, P S</creatorcontrib><creatorcontrib>Dubey, Ashish</creatorcontrib><creatorcontrib>Khan, Mamun Reza</creatorcontrib><creatorcontrib>Hasan, M D Nazmul</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Komarala, Vamsi K</creatorcontrib><creatorcontrib>Hoefelmeyer, James D</creatorcontrib><creatorcontrib>He, Qingquan</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Qiao, Hui</creatorcontrib><creatorcontrib>Zhang, Wen-Hua</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><title>Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles</title><title>Sustainable energy & fuels</title><description>In this work, we improved photovoltaic performance by about 27% in planar p-i-n perovskite solar cells (PSCs) using plasmonic Au@SiO2 core–shell nanoparticles (NPs). The devices have an architecture of ITO glass/PEDOT:PSS/perovskite(CH3NH3PbI3)/PCBM/Rhodamine/Ag. Four batches of devices were fabricated with different concentrations of Au@SiO2 NPs ranging from 0.4 to 1.6 wt% with an interval of 0.4 wt%. The Au@SiO2 NPs were integrated at the interface between the PEDOT:PSS layer and the active perovskite layer. At an optimized concentration of 1.2 wt% Au@SiO2 NPs, the PSCs achieved 25.1% of enhancement in photocurrent from 17.45 to 22.35 mA cm−2 and an improvement of 27.3% in power conversion efficiency (PCE) from 11.44 to 14.57%. This significant improvement in device performance is attributed to the localized surface plasmon resonance (LSPR) of Au@SiO2 NPs, which enhanced the light absorption in the active perovskite layer. The transient photocurrent and photovoltage measurements revealed that PSCs with Au@SiO2 NPs have a faster charge transport time and longer recombination lifetime than those without Au@SiO2 NPs. These results demonstrate that plasmonic metal nanoparticles substantially improved the efficiency of PSCs.</description><subject>Charge transport</subject><subject>Core-shell particles</subject><subject>Efficiency</subject><subject>Electromagnetic absorption</subject><subject>Energy conversion efficiency</subject><subject>Gold</subject><subject>Nanoparticles</subject><subject>Perovskites</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Recombination</subject><subject>Rhodamine</subject><subject>Silicon dioxide</subject><subject>Solar cells</subject><subject>Surface plasmon resonance</subject><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotj81KAzEURoMgWGo3PkHA9WhyM_mZnaWoFQpF1HXJZO60qWEyJjOCO9_BN_RJHNHVWXxwPg4hF5xdcSaqa6czMlZqsCdkBqIyRVkxOCOLnI-MMeBQgtQz8rj2-wMmim3rncfOfdAeU3zPr35AmmOwiToMIdMx-25Pl-PNk98CdTHh9-dXPkwb7WwXe5sG7wLmc3La2pBx8c85ebm7fV6ti832_mG13BQ9V3woAGvNlZCmagy2qEECK500ouYWnJVtrUQ9lTTGGDDKVdIiR_WbJHUjUMzJ5Z-3T_FtxDzsjnFM3XS5A865kQKEEj-WplBP</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Chandrasekhar, P S</creator><creator>Dubey, Ashish</creator><creator>Khan, Mamun Reza</creator><creator>Hasan, M D Nazmul</creator><creator>Bahrami, Behzad</creator><creator>Komarala, Vamsi K</creator><creator>Hoefelmeyer, James D</creator><creator>He, Qingquan</creator><creator>Wu, Fan</creator><creator>Qiao, Hui</creator><creator>Zhang, Wen-Hua</creator><creator>Qiao, Qiquan</creator><general>Royal Society of Chemistry</general><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope></search><sort><creationdate>20181001</creationdate><title>Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles</title><author>Chandrasekhar, P S ; Dubey, Ashish ; Khan, Mamun Reza ; Hasan, M D Nazmul ; Bahrami, Behzad ; Komarala, Vamsi K ; Hoefelmeyer, James D ; He, Qingquan ; Wu, Fan ; Qiao, Hui ; Zhang, Wen-Hua ; Qiao, Qiquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p161t-2eb7163589d8efe725204c583b1a2ca5fb63b039d888286c95ae1e6047257d3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Charge transport</topic><topic>Core-shell particles</topic><topic>Efficiency</topic><topic>Electromagnetic absorption</topic><topic>Energy conversion efficiency</topic><topic>Gold</topic><topic>Nanoparticles</topic><topic>Perovskites</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Recombination</topic><topic>Rhodamine</topic><topic>Silicon dioxide</topic><topic>Solar cells</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekhar, P S</creatorcontrib><creatorcontrib>Dubey, Ashish</creatorcontrib><creatorcontrib>Khan, Mamun Reza</creatorcontrib><creatorcontrib>Hasan, M D Nazmul</creatorcontrib><creatorcontrib>Bahrami, Behzad</creatorcontrib><creatorcontrib>Komarala, Vamsi K</creatorcontrib><creatorcontrib>Hoefelmeyer, James D</creatorcontrib><creatorcontrib>He, Qingquan</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Qiao, Hui</creatorcontrib><creatorcontrib>Zhang, Wen-Hua</creatorcontrib><creatorcontrib>Qiao, Qiquan</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekhar, P S</au><au>Dubey, Ashish</au><au>Khan, Mamun Reza</au><au>Hasan, M D Nazmul</au><au>Bahrami, Behzad</au><au>Komarala, Vamsi K</au><au>Hoefelmeyer, James D</au><au>He, Qingquan</au><au>Wu, Fan</au><au>Qiao, Hui</au><au>Zhang, Wen-Hua</au><au>Qiao, Qiquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles</atitle><jtitle>Sustainable energy & fuels</jtitle><date>2018-10-01</date><risdate>2018</risdate><volume>2</volume><issue>10</issue><spage>2260</spage><epage>2267</epage><pages>2260-2267</pages><eissn>2398-4902</eissn><abstract>In this work, we improved photovoltaic performance by about 27% in planar p-i-n perovskite solar cells (PSCs) using plasmonic Au@SiO2 core–shell nanoparticles (NPs). The devices have an architecture of ITO glass/PEDOT:PSS/perovskite(CH3NH3PbI3)/PCBM/Rhodamine/Ag. Four batches of devices were fabricated with different concentrations of Au@SiO2 NPs ranging from 0.4 to 1.6 wt% with an interval of 0.4 wt%. The Au@SiO2 NPs were integrated at the interface between the PEDOT:PSS layer and the active perovskite layer. At an optimized concentration of 1.2 wt% Au@SiO2 NPs, the PSCs achieved 25.1% of enhancement in photocurrent from 17.45 to 22.35 mA cm−2 and an improvement of 27.3% in power conversion efficiency (PCE) from 11.44 to 14.57%. This significant improvement in device performance is attributed to the localized surface plasmon resonance (LSPR) of Au@SiO2 NPs, which enhanced the light absorption in the active perovskite layer. The transient photocurrent and photovoltage measurements revealed that PSCs with Au@SiO2 NPs have a faster charge transport time and longer recombination lifetime than those without Au@SiO2 NPs. These results demonstrate that plasmonic metal nanoparticles substantially improved the efficiency of PSCs.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7se00472a</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2398-4902 |
ispartof | Sustainable energy & fuels, 2018-10, Vol.2 (10), p.2260-2267 |
issn | 2398-4902 |
language | eng |
recordid | cdi_proquest_journals_2111853236 |
source | Royal Society of Chemistry |
subjects | Charge transport Core-shell particles Efficiency Electromagnetic absorption Energy conversion efficiency Gold Nanoparticles Perovskites Photoelectric effect Photoelectric emission Photovoltaic cells Photovoltaics Recombination Rhodamine Silicon dioxide Solar cells Surface plasmon resonance |
title | Higher efficiency perovskite solar cells using Au@SiO2 core–shell nanoparticles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A16%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Higher%20efficiency%20perovskite%20solar%20cells%20using%20Au@SiO2%20core%E2%80%93shell%20nanoparticles&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Chandrasekhar,%20P%20S&rft.date=2018-10-01&rft.volume=2&rft.issue=10&rft.spage=2260&rft.epage=2267&rft.pages=2260-2267&rft.eissn=2398-4902&rft_id=info:doi/10.1039/c7se00472a&rft_dat=%3Cproquest%3E2111853236%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p161t-2eb7163589d8efe725204c583b1a2ca5fb63b039d888286c95ae1e6047257d3e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2111853236&rft_id=info:pmid/&rfr_iscdi=true |