Loading…

Analysis and control of the intermediate memory states of RRAM devices by means of admittance parameters

A thorough study of the admittance of TiN/Ti/HfO2/W bipolar resistive memories [resistance random access memory (RRAM)] was carried out under different bias conditions and in a wide range of ac signal frequencies. We demonstrate that a continuum of intermediate states can be obtained by applying app...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied physics 2018-10, Vol.124 (15)
Main Authors: Castán, H., Dueñas, S., García, H., Ossorio, O. G., Domínguez, L. A., Sahelices, B., Miranda, E., González, M. B., Campabadal, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A thorough study of the admittance of TiN/Ti/HfO2/W bipolar resistive memories [resistance random access memory (RRAM)] was carried out under different bias conditions and in a wide range of ac signal frequencies. We demonstrate that a continuum of intermediate states can be obtained by applying appropriate dc bias waveforms. Cumulative writing and erasing admittance cycles were performed by applying triangular voltage waveform of increasing amplitude. The influence of the initial conditions on the variation of the real (conductance) and imaginary (susceptance) components of the admittance is described. An accurate control of the memory state is achieved both in terms of the conductance and the susceptance by means of an adequate selection of the voltage values previously applied. A method to obtain three-dimensional voltage-conductance-susceptance state-plots is described in detail. Memory maps of admittance parameters as a function of the programming voltage are made by sensing the memory state at 0 V, without static power consumption. The multilevel nature of RRAM devices and their suitability for neuromorphic computation are demonstrated.
ISSN:0021-8979
1089-7550
DOI:10.1063/1.5024836