Loading…

Visual Rem apping by Vector Subtraction: Analysis of Multiplicative Gain Field Models

Saccadic eye movements remain spatially accurate even when the target becomes invisible and the initial eye position is perturbed. The brain accomplishes this in part by rem apping the remembered target location in retinal coordinates. The computation that underlies this visual remapping is approxim...

Full description

Saved in:
Bibliographic Details
Published in:Neural computation 2007-09, Vol.19 (9), p.2353
Main Author: Cassanello, Carlos R
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 9
container_start_page 2353
container_title Neural computation
container_volume 19
creator Cassanello, Carlos R
description Saccadic eye movements remain spatially accurate even when the target becomes invisible and the initial eye position is perturbed. The brain accomplishes this in part by rem apping the remembered target location in retinal coordinates. The computation that underlies this visual remapping is approximated by vector subtraction: the original saccade vector is updated by subtracting the vector corresponding to the intervening eye movement. The neural mechanism by which vector subtraction is implemented is not fully understood. Here, we investigate vector subtraction within a framework in which eye position and retinal target position signals interact multiplicatively (gain field). When the eyes move, they induce a spatial modulation of the firing rates across a retinotopic map of neurons. The updated saccade metric can be read from the shift of the peak of the population activity across the map. This model uses a quasi-linear (half-rectified) dependence on the eye position and requires the slope of the eye position input to be negatively proportional to the preferred retinal position of each neuron. We derive analytically this constraint and study its range of validity. We discuss how this mechanism relates to experimental results reported in the frontal eye fields of macaque monkeys. [PUBLICATION ABSTRACT]
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_211237578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1310532231</sourcerecordid><originalsourceid>FETCH-proquest_journals_2112375783</originalsourceid><addsrcrecordid>eNqNzLsOgjAUgOHGaCJe3uHEnaRAgOpmjJeFxQtxIwWqOaZS5LQmvL0OPoDTv3z5B8wL4oj7QojrkHlcLJd-miTpmE2IHpzzJOCxxy45kpMajuoJsm2xuUPZQ64qazo4udJ2srJomhWsG6l7QgJzg8xpi63GSlp8K9hLbGCHSteQmVppmrHRTWpS81-nbLHbnjcHv-3MyymyxcO47jukIgyCMErjVER_oQ9DUkFy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211237578</pqid></control><display><type>article</type><title>Visual Rem apping by Vector Subtraction: Analysis of Multiplicative Gain Field Models</title><source>MIT Press Journals</source><creator>Cassanello, Carlos R</creator><creatorcontrib>Cassanello, Carlos R</creatorcontrib><description>Saccadic eye movements remain spatially accurate even when the target becomes invisible and the initial eye position is perturbed. The brain accomplishes this in part by rem apping the remembered target location in retinal coordinates. The computation that underlies this visual remapping is approximated by vector subtraction: the original saccade vector is updated by subtracting the vector corresponding to the intervening eye movement. The neural mechanism by which vector subtraction is implemented is not fully understood. Here, we investigate vector subtraction within a framework in which eye position and retinal target position signals interact multiplicatively (gain field). When the eyes move, they induce a spatial modulation of the firing rates across a retinotopic map of neurons. The updated saccade metric can be read from the shift of the peak of the population activity across the map. This model uses a quasi-linear (half-rectified) dependence on the eye position and requires the slope of the eye position input to be negatively proportional to the preferred retinal position of each neuron. We derive analytically this constraint and study its range of validity. We discuss how this mechanism relates to experimental results reported in the frontal eye fields of macaque monkeys. [PUBLICATION ABSTRACT]</description><identifier>ISSN: 0899-7667</identifier><identifier>EISSN: 1530-888X</identifier><identifier>CODEN: NEUCEB</identifier><language>eng</language><publisher>Cambridge: MIT Press Journals, The</publisher><subject>Eye movements ; Monkeys &amp; apes ; Neurons ; Retina</subject><ispartof>Neural computation, 2007-09, Vol.19 (9), p.2353</ispartof><rights>Copyright MIT Press Journals Sep 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Cassanello, Carlos R</creatorcontrib><title>Visual Rem apping by Vector Subtraction: Analysis of Multiplicative Gain Field Models</title><title>Neural computation</title><description>Saccadic eye movements remain spatially accurate even when the target becomes invisible and the initial eye position is perturbed. The brain accomplishes this in part by rem apping the remembered target location in retinal coordinates. The computation that underlies this visual remapping is approximated by vector subtraction: the original saccade vector is updated by subtracting the vector corresponding to the intervening eye movement. The neural mechanism by which vector subtraction is implemented is not fully understood. Here, we investigate vector subtraction within a framework in which eye position and retinal target position signals interact multiplicatively (gain field). When the eyes move, they induce a spatial modulation of the firing rates across a retinotopic map of neurons. The updated saccade metric can be read from the shift of the peak of the population activity across the map. This model uses a quasi-linear (half-rectified) dependence on the eye position and requires the slope of the eye position input to be negatively proportional to the preferred retinal position of each neuron. We derive analytically this constraint and study its range of validity. We discuss how this mechanism relates to experimental results reported in the frontal eye fields of macaque monkeys. [PUBLICATION ABSTRACT]</description><subject>Eye movements</subject><subject>Monkeys &amp; apes</subject><subject>Neurons</subject><subject>Retina</subject><issn>0899-7667</issn><issn>1530-888X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNzLsOgjAUgOHGaCJe3uHEnaRAgOpmjJeFxQtxIwWqOaZS5LQmvL0OPoDTv3z5B8wL4oj7QojrkHlcLJd-miTpmE2IHpzzJOCxxy45kpMajuoJsm2xuUPZQ64qazo4udJ2srJomhWsG6l7QgJzg8xpi63GSlp8K9hLbGCHSteQmVppmrHRTWpS81-nbLHbnjcHv-3MyymyxcO47jukIgyCMErjVER_oQ9DUkFy</recordid><startdate>20070901</startdate><enddate>20070901</enddate><creator>Cassanello, Carlos R</creator><general>MIT Press Journals, The</general><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20070901</creationdate><title>Visual Rem apping by Vector Subtraction: Analysis of Multiplicative Gain Field Models</title><author>Cassanello, Carlos R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_2112375783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Eye movements</topic><topic>Monkeys &amp; apes</topic><topic>Neurons</topic><topic>Retina</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassanello, Carlos R</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassanello, Carlos R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Rem apping by Vector Subtraction: Analysis of Multiplicative Gain Field Models</atitle><jtitle>Neural computation</jtitle><date>2007-09-01</date><risdate>2007</risdate><volume>19</volume><issue>9</issue><spage>2353</spage><pages>2353-</pages><issn>0899-7667</issn><eissn>1530-888X</eissn><coden>NEUCEB</coden><abstract>Saccadic eye movements remain spatially accurate even when the target becomes invisible and the initial eye position is perturbed. The brain accomplishes this in part by rem apping the remembered target location in retinal coordinates. The computation that underlies this visual remapping is approximated by vector subtraction: the original saccade vector is updated by subtracting the vector corresponding to the intervening eye movement. The neural mechanism by which vector subtraction is implemented is not fully understood. Here, we investigate vector subtraction within a framework in which eye position and retinal target position signals interact multiplicatively (gain field). When the eyes move, they induce a spatial modulation of the firing rates across a retinotopic map of neurons. The updated saccade metric can be read from the shift of the peak of the population activity across the map. This model uses a quasi-linear (half-rectified) dependence on the eye position and requires the slope of the eye position input to be negatively proportional to the preferred retinal position of each neuron. We derive analytically this constraint and study its range of validity. We discuss how this mechanism relates to experimental results reported in the frontal eye fields of macaque monkeys. [PUBLICATION ABSTRACT]</abstract><cop>Cambridge</cop><pub>MIT Press Journals, The</pub></addata></record>
fulltext fulltext
identifier ISSN: 0899-7667
ispartof Neural computation, 2007-09, Vol.19 (9), p.2353
issn 0899-7667
1530-888X
language eng
recordid cdi_proquest_journals_211237578
source MIT Press Journals
subjects Eye movements
Monkeys & apes
Neurons
Retina
title Visual Rem apping by Vector Subtraction: Analysis of Multiplicative Gain Field Models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A07%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Rem%20apping%20by%20Vector%20Subtraction:%20Analysis%20of%20Multiplicative%20Gain%20Field%20Models&rft.jtitle=Neural%20computation&rft.au=Cassanello,%20Carlos%20R&rft.date=2007-09-01&rft.volume=19&rft.issue=9&rft.spage=2353&rft.pages=2353-&rft.issn=0899-7667&rft.eissn=1530-888X&rft.coden=NEUCEB&rft_id=info:doi/&rft_dat=%3Cproquest%3E1310532231%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_2112375783%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=211237578&rft_id=info:pmid/&rfr_iscdi=true