Loading…

Hydrothermal Synthesis and Characterization of an Apatite‐Type Lanthanum Silicate Ceramic for Solid Oxide Fuel Cell Electrolyte Applications

Apatite‐type lanthanum silicate (La10Si6O27; LS) nanopowders are synthesized using a hydrothermal process and used for the electrolyte applications in solid oxide fuel cells (SOFCs). The synthesized nanopowders are characterized by Rietveld refinement of the X‐ray diffraction (XRD) data, SEM–energy‐...

Full description

Saved in:
Bibliographic Details
Published in:Energy technology (Weinheim, Germany) Germany), 2018-09, Vol.6 (9), p.1739-1746
Main Authors: Jena, Paramananda, Patro, Pankaj K., Sinha, Amit, Lenka, Raja K., Singh, Akhilesh Kumar, Mahata, Tarasankar, Sinha, Pankaj K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3567-93cb1ce18541963a3676fd858d759db5d0a69eb902baf56d3c5518e2608a911c3
cites cdi_FETCH-LOGICAL-c3567-93cb1ce18541963a3676fd858d759db5d0a69eb902baf56d3c5518e2608a911c3
container_end_page 1746
container_issue 9
container_start_page 1739
container_title Energy technology (Weinheim, Germany)
container_volume 6
creator Jena, Paramananda
Patro, Pankaj K.
Sinha, Amit
Lenka, Raja K.
Singh, Akhilesh Kumar
Mahata, Tarasankar
Sinha, Pankaj K.
description Apatite‐type lanthanum silicate (La10Si6O27; LS) nanopowders are synthesized using a hydrothermal process and used for the electrolyte applications in solid oxide fuel cells (SOFCs). The synthesized nanopowders are characterized by Rietveld refinement of the X‐ray diffraction (XRD) data, SEM–energy‐dispersive X‐ray spectroscopy (EDS), TEM, and dialotometry. The prepared nanopowders can be sintered to near theoretical density at sintering temperature of 1500 °C. Reactivity studies between the synthesized La10Si6O27 material and cathode materials such as La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), Nd2NiO4 (NNO), and Pr2NiO4 (PNO), are carried out by XRD analysis revealing that they do not react. Symmetric cells are fabricated and characterized electrochemically. The area specific resistances for LSCF, NNO, PNO, and PNO‐LS (1:1 (wt %)) measured at 900 οC, are 100, 2.2, 1.8, and 0.5 Ω cm2, respectively. EDS analysis shows that interdiffusion of cations at the cathode–electrolyte interface is not detected for LS/PNO, which is attributed to the low area‐specific resistance values. The results demonstrate that Pr2NiO4 and the composites are promising cathode materials for the apatite‐type lanthanum silicate electrolyte for SOFC applications. Phase‐pure La10Si6O27 (LS) ceramics are synthesized using a hydrothermal process. La10Si6O27 could be sintered to 95 % of the theoretical density and the reactivity of LS with several state‐of‐the‐art cathode materials is investigated. Diffusion of cations is not detected at cathode‐electrolyte interface of PNO/LS. Pr2NiO4 (PNO), and LS‐PNO are shown to be promising cathodes for LS electrolytes.
doi_str_mv 10.1002/ente.201700867
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2112512195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112512195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-93cb1ce18541963a3676fd858d759db5d0a69eb902baf56d3c5518e2608a911c3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhSMEElXpymyJucVOaiceq6ilSBUdWubIsW9UV04c7FQQJp4A8Yw8CS5FMDLdv_PdI50ouiZ4QjCOb6HpYBJjkmKcsfQsGsSET8fTmLPz3z7LLqOR93uMMcE0oTgZRO_LXjnb7cDVwqBN34TWa49Eo1C-E07IDpx-FZ22DbJV2KNZG6YOPt8-tn0LaCUCI5pDjTbaaCk6QDk4UWuJKuvQxhqt0PpFK0CLA5hwNAbNDcjOWdMH9axtv7ng4K-ii0oYD6OfOoweF_Ntvhyv1nf3-Ww1lgll6ZgnsiQSSEanhLNEJCxllcpoplLKVUkVFoxDyXFciooylUhKSQYxw5nghMhkGN2c_rbOPh3Ad8XeHlwTLIuYkJiSEBkNqslJJZ313kFVtE7XwvUFwcUx9uIYe_EbewD4CXjWBvp_1MX8YTv_Y78Ad4GJag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112512195</pqid></control><display><type>article</type><title>Hydrothermal Synthesis and Characterization of an Apatite‐Type Lanthanum Silicate Ceramic for Solid Oxide Fuel Cell Electrolyte Applications</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Jena, Paramananda ; Patro, Pankaj K. ; Sinha, Amit ; Lenka, Raja K. ; Singh, Akhilesh Kumar ; Mahata, Tarasankar ; Sinha, Pankaj K.</creator><creatorcontrib>Jena, Paramananda ; Patro, Pankaj K. ; Sinha, Amit ; Lenka, Raja K. ; Singh, Akhilesh Kumar ; Mahata, Tarasankar ; Sinha, Pankaj K.</creatorcontrib><description>Apatite‐type lanthanum silicate (La10Si6O27; LS) nanopowders are synthesized using a hydrothermal process and used for the electrolyte applications in solid oxide fuel cells (SOFCs). The synthesized nanopowders are characterized by Rietveld refinement of the X‐ray diffraction (XRD) data, SEM–energy‐dispersive X‐ray spectroscopy (EDS), TEM, and dialotometry. The prepared nanopowders can be sintered to near theoretical density at sintering temperature of 1500 °C. Reactivity studies between the synthesized La10Si6O27 material and cathode materials such as La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), Nd2NiO4 (NNO), and Pr2NiO4 (PNO), are carried out by XRD analysis revealing that they do not react. Symmetric cells are fabricated and characterized electrochemically. The area specific resistances for LSCF, NNO, PNO, and PNO‐LS (1:1 (wt %)) measured at 900 οC, are 100, 2.2, 1.8, and 0.5 Ω cm2, respectively. EDS analysis shows that interdiffusion of cations at the cathode–electrolyte interface is not detected for LS/PNO, which is attributed to the low area‐specific resistance values. The results demonstrate that Pr2NiO4 and the composites are promising cathode materials for the apatite‐type lanthanum silicate electrolyte for SOFC applications. Phase‐pure La10Si6O27 (LS) ceramics are synthesized using a hydrothermal process. La10Si6O27 could be sintered to 95 % of the theoretical density and the reactivity of LS with several state‐of‐the‐art cathode materials is investigated. Diffusion of cations is not detected at cathode‐electrolyte interface of PNO/LS. Pr2NiO4 (PNO), and LS‐PNO are shown to be promising cathodes for LS electrolytes.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201700867</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Apatite ; area specific resistance ; Cathodes ; Cations ; Ceramics industry ; Electrode materials ; Electrolytes ; Electrolytic cells ; Energy dispersive X ray spectroscopy ; Fuel cells ; Fuel technology ; hydrothermal synthesis ; impedance ; Interdiffusion ; Lanthanum ; Solid oxide fuel cells ; Synthesis ; Theoretical density ; X-ray diffraction</subject><ispartof>Energy technology (Weinheim, Germany), 2018-09, Vol.6 (9), p.1739-1746</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-93cb1ce18541963a3676fd858d759db5d0a69eb902baf56d3c5518e2608a911c3</citedby><cites>FETCH-LOGICAL-c3567-93cb1ce18541963a3676fd858d759db5d0a69eb902baf56d3c5518e2608a911c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Jena, Paramananda</creatorcontrib><creatorcontrib>Patro, Pankaj K.</creatorcontrib><creatorcontrib>Sinha, Amit</creatorcontrib><creatorcontrib>Lenka, Raja K.</creatorcontrib><creatorcontrib>Singh, Akhilesh Kumar</creatorcontrib><creatorcontrib>Mahata, Tarasankar</creatorcontrib><creatorcontrib>Sinha, Pankaj K.</creatorcontrib><title>Hydrothermal Synthesis and Characterization of an Apatite‐Type Lanthanum Silicate Ceramic for Solid Oxide Fuel Cell Electrolyte Applications</title><title>Energy technology (Weinheim, Germany)</title><description>Apatite‐type lanthanum silicate (La10Si6O27; LS) nanopowders are synthesized using a hydrothermal process and used for the electrolyte applications in solid oxide fuel cells (SOFCs). The synthesized nanopowders are characterized by Rietveld refinement of the X‐ray diffraction (XRD) data, SEM–energy‐dispersive X‐ray spectroscopy (EDS), TEM, and dialotometry. The prepared nanopowders can be sintered to near theoretical density at sintering temperature of 1500 °C. Reactivity studies between the synthesized La10Si6O27 material and cathode materials such as La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), Nd2NiO4 (NNO), and Pr2NiO4 (PNO), are carried out by XRD analysis revealing that they do not react. Symmetric cells are fabricated and characterized electrochemically. The area specific resistances for LSCF, NNO, PNO, and PNO‐LS (1:1 (wt %)) measured at 900 οC, are 100, 2.2, 1.8, and 0.5 Ω cm2, respectively. EDS analysis shows that interdiffusion of cations at the cathode–electrolyte interface is not detected for LS/PNO, which is attributed to the low area‐specific resistance values. The results demonstrate that Pr2NiO4 and the composites are promising cathode materials for the apatite‐type lanthanum silicate electrolyte for SOFC applications. Phase‐pure La10Si6O27 (LS) ceramics are synthesized using a hydrothermal process. La10Si6O27 could be sintered to 95 % of the theoretical density and the reactivity of LS with several state‐of‐the‐art cathode materials is investigated. Diffusion of cations is not detected at cathode‐electrolyte interface of PNO/LS. Pr2NiO4 (PNO), and LS‐PNO are shown to be promising cathodes for LS electrolytes.</description><subject>Apatite</subject><subject>area specific resistance</subject><subject>Cathodes</subject><subject>Cations</subject><subject>Ceramics industry</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Energy dispersive X ray spectroscopy</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>hydrothermal synthesis</subject><subject>impedance</subject><subject>Interdiffusion</subject><subject>Lanthanum</subject><subject>Solid oxide fuel cells</subject><subject>Synthesis</subject><subject>Theoretical density</subject><subject>X-ray diffraction</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhSMEElXpymyJucVOaiceq6ilSBUdWubIsW9UV04c7FQQJp4A8Yw8CS5FMDLdv_PdI50ouiZ4QjCOb6HpYBJjkmKcsfQsGsSET8fTmLPz3z7LLqOR93uMMcE0oTgZRO_LXjnb7cDVwqBN34TWa49Eo1C-E07IDpx-FZ22DbJV2KNZG6YOPt8-tn0LaCUCI5pDjTbaaCk6QDk4UWuJKuvQxhqt0PpFK0CLA5hwNAbNDcjOWdMH9axtv7ng4K-ii0oYD6OfOoweF_Ntvhyv1nf3-Ww1lgll6ZgnsiQSSEanhLNEJCxllcpoplLKVUkVFoxDyXFciooylUhKSQYxw5nghMhkGN2c_rbOPh3Ad8XeHlwTLIuYkJiSEBkNqslJJZ313kFVtE7XwvUFwcUx9uIYe_EbewD4CXjWBvp_1MX8YTv_Y78Ad4GJag</recordid><startdate>201809</startdate><enddate>201809</enddate><creator>Jena, Paramananda</creator><creator>Patro, Pankaj K.</creator><creator>Sinha, Amit</creator><creator>Lenka, Raja K.</creator><creator>Singh, Akhilesh Kumar</creator><creator>Mahata, Tarasankar</creator><creator>Sinha, Pankaj K.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201809</creationdate><title>Hydrothermal Synthesis and Characterization of an Apatite‐Type Lanthanum Silicate Ceramic for Solid Oxide Fuel Cell Electrolyte Applications</title><author>Jena, Paramananda ; Patro, Pankaj K. ; Sinha, Amit ; Lenka, Raja K. ; Singh, Akhilesh Kumar ; Mahata, Tarasankar ; Sinha, Pankaj K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-93cb1ce18541963a3676fd858d759db5d0a69eb902baf56d3c5518e2608a911c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Apatite</topic><topic>area specific resistance</topic><topic>Cathodes</topic><topic>Cations</topic><topic>Ceramics industry</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Energy dispersive X ray spectroscopy</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>hydrothermal synthesis</topic><topic>impedance</topic><topic>Interdiffusion</topic><topic>Lanthanum</topic><topic>Solid oxide fuel cells</topic><topic>Synthesis</topic><topic>Theoretical density</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jena, Paramananda</creatorcontrib><creatorcontrib>Patro, Pankaj K.</creatorcontrib><creatorcontrib>Sinha, Amit</creatorcontrib><creatorcontrib>Lenka, Raja K.</creatorcontrib><creatorcontrib>Singh, Akhilesh Kumar</creatorcontrib><creatorcontrib>Mahata, Tarasankar</creatorcontrib><creatorcontrib>Sinha, Pankaj K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jena, Paramananda</au><au>Patro, Pankaj K.</au><au>Sinha, Amit</au><au>Lenka, Raja K.</au><au>Singh, Akhilesh Kumar</au><au>Mahata, Tarasankar</au><au>Sinha, Pankaj K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal Synthesis and Characterization of an Apatite‐Type Lanthanum Silicate Ceramic for Solid Oxide Fuel Cell Electrolyte Applications</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2018-09</date><risdate>2018</risdate><volume>6</volume><issue>9</issue><spage>1739</spage><epage>1746</epage><pages>1739-1746</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>Apatite‐type lanthanum silicate (La10Si6O27; LS) nanopowders are synthesized using a hydrothermal process and used for the electrolyte applications in solid oxide fuel cells (SOFCs). The synthesized nanopowders are characterized by Rietveld refinement of the X‐ray diffraction (XRD) data, SEM–energy‐dispersive X‐ray spectroscopy (EDS), TEM, and dialotometry. The prepared nanopowders can be sintered to near theoretical density at sintering temperature of 1500 °C. Reactivity studies between the synthesized La10Si6O27 material and cathode materials such as La0.6Sr0.4Co0.2Fe0.8O3−δ (LSCF), Nd2NiO4 (NNO), and Pr2NiO4 (PNO), are carried out by XRD analysis revealing that they do not react. Symmetric cells are fabricated and characterized electrochemically. The area specific resistances for LSCF, NNO, PNO, and PNO‐LS (1:1 (wt %)) measured at 900 οC, are 100, 2.2, 1.8, and 0.5 Ω cm2, respectively. EDS analysis shows that interdiffusion of cations at the cathode–electrolyte interface is not detected for LS/PNO, which is attributed to the low area‐specific resistance values. The results demonstrate that Pr2NiO4 and the composites are promising cathode materials for the apatite‐type lanthanum silicate electrolyte for SOFC applications. Phase‐pure La10Si6O27 (LS) ceramics are synthesized using a hydrothermal process. La10Si6O27 could be sintered to 95 % of the theoretical density and the reactivity of LS with several state‐of‐the‐art cathode materials is investigated. Diffusion of cations is not detected at cathode‐electrolyte interface of PNO/LS. Pr2NiO4 (PNO), and LS‐PNO are shown to be promising cathodes for LS electrolytes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.201700867</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2018-09, Vol.6 (9), p.1739-1746
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_2112512195
source Wiley-Blackwell Read & Publish Collection
subjects Apatite
area specific resistance
Cathodes
Cations
Ceramics industry
Electrode materials
Electrolytes
Electrolytic cells
Energy dispersive X ray spectroscopy
Fuel cells
Fuel technology
hydrothermal synthesis
impedance
Interdiffusion
Lanthanum
Solid oxide fuel cells
Synthesis
Theoretical density
X-ray diffraction
title Hydrothermal Synthesis and Characterization of an Apatite‐Type Lanthanum Silicate Ceramic for Solid Oxide Fuel Cell Electrolyte Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A34%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20Synthesis%20and%20Characterization%20of%20an%20Apatite%E2%80%90Type%20Lanthanum%20Silicate%20Ceramic%20for%20Solid%20Oxide%20Fuel%20Cell%20Electrolyte%20Applications&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Jena,%20Paramananda&rft.date=2018-09&rft.volume=6&rft.issue=9&rft.spage=1739&rft.epage=1746&rft.pages=1739-1746&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201700867&rft_dat=%3Cproquest_cross%3E2112512195%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3567-93cb1ce18541963a3676fd858d759db5d0a69eb902baf56d3c5518e2608a911c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2112512195&rft_id=info:pmid/&rfr_iscdi=true