Loading…
Cavity Optomechanics of Topological Spin Textures in Magnetic Insulators
Collective dynamics of topological magnetic textures can be thought of as a massive particle moving in a magnetic pinning potential. We demonstrate that inside a cavity resonator this effective mechanical system can feel the electromagnetic radiation pressure from cavity photons through the magneto-...
Saved in:
Published in: | arXiv.org 2019-01 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Collective dynamics of topological magnetic textures can be thought of as a massive particle moving in a magnetic pinning potential. We demonstrate that inside a cavity resonator this effective mechanical system can feel the electromagnetic radiation pressure from cavity photons through the magneto-optical inverse Faraday and Cotton-Mouton effects. We estimate values for the effective parameters of the optomechanical coupling for two spin textures -- a Bloch domain wall and a chiral magnetic soliton lattice. The soliton lattice has magnetic chirality, so that in circularly polarized light it behaves like a chiral particle with the sign of the optomechanical coupling determined by the helicity of the light and chirality of the lattice. Most interestingly, we find a level attraction regime for the soliton lattice, which is tunable through an applied magnetic field. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1809.10091 |