Loading…
Back in business: operations research in support of big data analytics for operations and supply chain management
Few topics have generated more discourse in recent years than big data analytics. Given their knowledge of analytical and mathematical methods, operations research (OR) scholars would seem well poised to take a lead role in this discussion. Unfortunately, some have suggested there is a misalignment...
Saved in:
Published in: | Annals of operations research 2018-11, Vol.270 (1-2), p.201-211 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Few topics have generated more discourse in recent years than big data analytics. Given their knowledge of analytical and mathematical methods, operations research (OR) scholars would seem well poised to take a lead role in this discussion. Unfortunately, some have suggested there is a misalignment between the work of OR scholars and the needs of practicing managers, especially those in the field of operations and supply chain management where data-driven decision-making is a key component of most job descriptions. In this paper, we attempt to address this misalignment. We examine both applied and scholarly applications of OR-based big data analytical tools and techniques within an operations and supply chain management context to highlight their future potential in this domain. This paper contributes by providing suggestions for scholars, educators, and practitioners that aid to illustrate how OR can be instrumental in solving big data analytics problems in support of operations and supply chain management. |
---|---|
ISSN: | 0254-5330 1572-9338 |
DOI: | 10.1007/s10479-016-2226-0 |