Loading…
Exponential Ergodicity for SDEs Driven by α-Stable Processes with Markovian Switching in Wasserstein Distances
In this paper, we consider the ergodicity for stochastic differential equations driven by symmetric α -stable processes with Markovian switching in Wasserstein distances. Some sufficient conditions for the exponential ergodicity are presented by using the theory of M-matrix, coupling method and Lyap...
Saved in:
Published in: | Potential analysis 2018-11, Vol.49 (4), p.503-526 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2313-304708cb6af7990fd92d8f163ea695efd4fbed31455524a8f4a74cd45623d2413 |
---|---|
cites | cdi_FETCH-LOGICAL-c2313-304708cb6af7990fd92d8f163ea695efd4fbed31455524a8f4a74cd45623d2413 |
container_end_page | 526 |
container_issue | 4 |
container_start_page | 503 |
container_title | Potential analysis |
container_volume | 49 |
creator | Tong, Jinying Jin, Xinghu Zhang, Zhenzhong |
description | In this paper, we consider the ergodicity for stochastic differential equations driven by symmetric
α
-stable processes with Markovian switching in Wasserstein distances. Some sufficient conditions for the exponential ergodicity are presented by using the theory of M-matrix, coupling method and Lyapunov function method. As applications, the Ornstein-Uhlenbeck type process and some other processes driven by symmetric
α
-stable processes with Markovian switching are presented to illustrate our results. In addition, under some conditions, an explicit expression of the invariant measure for Ornstein-Uhlenbeck process is given. |
doi_str_mv | 10.1007/s11118-017-9665-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2113835552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113835552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2313-304708cb6af7990fd92d8f163ea695efd4fbed31455524a8f4a74cd45623d2413</originalsourceid><addsrcrecordid>eNp1kM1KAzEQx4MoWKsP4C3gOZqvze4epV0_oKJQRW8hu5u0qTWpybbax_JFfCZTVvDkXGYGfr8Z-ANwSvA5wTi_iCRVgTDJUSlEhtgeGJAsp6ik5cs-GOCSCkQFJofgKMYFxpjmeTEAvvpceaddZ9USVmHmW9vYbguND3A6riIcB7vRDtZb-P2Fpp2qlxo-BN_oGHWEH7abwzsVXv3GKgenaW_m1s2gdfBZJSTETqd5bGOnXJKOwYFRy6hPfvsQPF1Vj6MbNLm_vh1dTlBDGWGIYZ7joqmFMnlZYtOWtC0MEUwrUWbatNzUumWEZ1lGuSoMVzlvWp4JylrKCRuCs_7uKvj3tY6dXPh1cOmlpISwgu3ERJGeaoKPMWgjV8G-qbCVBMtdrrLPVaZc5S5XyZJDeycm1s10-Lv8v_QDbpl8Mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2113835552</pqid></control><display><type>article</type><title>Exponential Ergodicity for SDEs Driven by α-Stable Processes with Markovian Switching in Wasserstein Distances</title><source>Springer Link</source><creator>Tong, Jinying ; Jin, Xinghu ; Zhang, Zhenzhong</creator><creatorcontrib>Tong, Jinying ; Jin, Xinghu ; Zhang, Zhenzhong</creatorcontrib><description>In this paper, we consider the ergodicity for stochastic differential equations driven by symmetric
α
-stable processes with Markovian switching in Wasserstein distances. Some sufficient conditions for the exponential ergodicity are presented by using the theory of M-matrix, coupling method and Lyapunov function method. As applications, the Ornstein-Uhlenbeck type process and some other processes driven by symmetric
α
-stable processes with Markovian switching are presented to illustrate our results. In addition, under some conditions, an explicit expression of the invariant measure for Ornstein-Uhlenbeck process is given.</description><identifier>ISSN: 0926-2601</identifier><identifier>EISSN: 1572-929X</identifier><identifier>DOI: 10.1007/s11118-017-9665-3</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Differential equations ; Economic models ; Ergodic processes ; Functional Analysis ; Geometry ; Liapunov functions ; Markov analysis ; Markov processes ; Mathematics ; Mathematics and Statistics ; Ornstein-Uhlenbeck process ; Potential Theory ; Probability Theory and Stochastic Processes ; Switching</subject><ispartof>Potential analysis, 2018-11, Vol.49 (4), p.503-526</ispartof><rights>Springer Science+Business Media B.V., part of Springer Nature 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2313-304708cb6af7990fd92d8f163ea695efd4fbed31455524a8f4a74cd45623d2413</citedby><cites>FETCH-LOGICAL-c2313-304708cb6af7990fd92d8f163ea695efd4fbed31455524a8f4a74cd45623d2413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Tong, Jinying</creatorcontrib><creatorcontrib>Jin, Xinghu</creatorcontrib><creatorcontrib>Zhang, Zhenzhong</creatorcontrib><title>Exponential Ergodicity for SDEs Driven by α-Stable Processes with Markovian Switching in Wasserstein Distances</title><title>Potential analysis</title><addtitle>Potential Anal</addtitle><description>In this paper, we consider the ergodicity for stochastic differential equations driven by symmetric
α
-stable processes with Markovian switching in Wasserstein distances. Some sufficient conditions for the exponential ergodicity are presented by using the theory of M-matrix, coupling method and Lyapunov function method. As applications, the Ornstein-Uhlenbeck type process and some other processes driven by symmetric
α
-stable processes with Markovian switching are presented to illustrate our results. In addition, under some conditions, an explicit expression of the invariant measure for Ornstein-Uhlenbeck process is given.</description><subject>Differential equations</subject><subject>Economic models</subject><subject>Ergodic processes</subject><subject>Functional Analysis</subject><subject>Geometry</subject><subject>Liapunov functions</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ornstein-Uhlenbeck process</subject><subject>Potential Theory</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Switching</subject><issn>0926-2601</issn><issn>1572-929X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEQx4MoWKsP4C3gOZqvze4epV0_oKJQRW8hu5u0qTWpybbax_JFfCZTVvDkXGYGfr8Z-ANwSvA5wTi_iCRVgTDJUSlEhtgeGJAsp6ik5cs-GOCSCkQFJofgKMYFxpjmeTEAvvpceaddZ9USVmHmW9vYbguND3A6riIcB7vRDtZb-P2Fpp2qlxo-BN_oGHWEH7abwzsVXv3GKgenaW_m1s2gdfBZJSTETqd5bGOnXJKOwYFRy6hPfvsQPF1Vj6MbNLm_vh1dTlBDGWGIYZ7joqmFMnlZYtOWtC0MEUwrUWbatNzUumWEZ1lGuSoMVzlvWp4JylrKCRuCs_7uKvj3tY6dXPh1cOmlpISwgu3ERJGeaoKPMWgjV8G-qbCVBMtdrrLPVaZc5S5XyZJDeycm1s10-Lv8v_QDbpl8Mg</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Tong, Jinying</creator><creator>Jin, Xinghu</creator><creator>Zhang, Zhenzhong</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181101</creationdate><title>Exponential Ergodicity for SDEs Driven by α-Stable Processes with Markovian Switching in Wasserstein Distances</title><author>Tong, Jinying ; Jin, Xinghu ; Zhang, Zhenzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2313-304708cb6af7990fd92d8f163ea695efd4fbed31455524a8f4a74cd45623d2413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Differential equations</topic><topic>Economic models</topic><topic>Ergodic processes</topic><topic>Functional Analysis</topic><topic>Geometry</topic><topic>Liapunov functions</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ornstein-Uhlenbeck process</topic><topic>Potential Theory</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tong, Jinying</creatorcontrib><creatorcontrib>Jin, Xinghu</creatorcontrib><creatorcontrib>Zhang, Zhenzhong</creatorcontrib><collection>CrossRef</collection><jtitle>Potential analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tong, Jinying</au><au>Jin, Xinghu</au><au>Zhang, Zhenzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential Ergodicity for SDEs Driven by α-Stable Processes with Markovian Switching in Wasserstein Distances</atitle><jtitle>Potential analysis</jtitle><stitle>Potential Anal</stitle><date>2018-11-01</date><risdate>2018</risdate><volume>49</volume><issue>4</issue><spage>503</spage><epage>526</epage><pages>503-526</pages><issn>0926-2601</issn><eissn>1572-929X</eissn><abstract>In this paper, we consider the ergodicity for stochastic differential equations driven by symmetric
α
-stable processes with Markovian switching in Wasserstein distances. Some sufficient conditions for the exponential ergodicity are presented by using the theory of M-matrix, coupling method and Lyapunov function method. As applications, the Ornstein-Uhlenbeck type process and some other processes driven by symmetric
α
-stable processes with Markovian switching are presented to illustrate our results. In addition, under some conditions, an explicit expression of the invariant measure for Ornstein-Uhlenbeck process is given.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11118-017-9665-3</doi><tpages>24</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0926-2601 |
ispartof | Potential analysis, 2018-11, Vol.49 (4), p.503-526 |
issn | 0926-2601 1572-929X |
language | eng |
recordid | cdi_proquest_journals_2113835552 |
source | Springer Link |
subjects | Differential equations Economic models Ergodic processes Functional Analysis Geometry Liapunov functions Markov analysis Markov processes Mathematics Mathematics and Statistics Ornstein-Uhlenbeck process Potential Theory Probability Theory and Stochastic Processes Switching |
title | Exponential Ergodicity for SDEs Driven by α-Stable Processes with Markovian Switching in Wasserstein Distances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A52%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20Ergodicity%20for%20SDEs%20Driven%20by%20%CE%B1-Stable%20Processes%20with%20Markovian%20Switching%20in%20Wasserstein%20Distances&rft.jtitle=Potential%20analysis&rft.au=Tong,%20Jinying&rft.date=2018-11-01&rft.volume=49&rft.issue=4&rft.spage=503&rft.epage=526&rft.pages=503-526&rft.issn=0926-2601&rft.eissn=1572-929X&rft_id=info:doi/10.1007/s11118-017-9665-3&rft_dat=%3Cproquest_cross%3E2113835552%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2313-304708cb6af7990fd92d8f163ea695efd4fbed31455524a8f4a74cd45623d2413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2113835552&rft_id=info:pmid/&rfr_iscdi=true |